Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 105(51): 20350-5, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19075224

RESUMO

Drainage of peatlands and deforestation have led to large-scale fires in equatorial Asia, affecting regional air quality and global concentrations of greenhouse gases. Here we used several sources of satellite data with biogeochemical and atmospheric modeling to better understand and constrain fire emissions from Indonesia, Malaysia, and Papua New Guinea during 2000-2006. We found that average fire emissions from this region [128 +/- 51 (1sigma) Tg carbon (C) year(-1), T = 10(12)] were comparable to fossil fuel emissions. In Borneo, carbon emissions from fires were highly variable, fluxes during the moderate 2006 El Niño more than 30 times greater than those during the 2000 La Niña (and with a 2000-2006 mean of 74 +/- 33 Tg C yr(-1)). Higher rates of forest loss and larger areas of peatland becoming vulnerable to fire in drought years caused a strong nonlinear relation between drought and fire emissions in southern Borneo. Fire emissions from Sumatra showed a positive linear trend, increasing at a rate of 8 Tg C year(-2) (approximately doubling during 2000-2006). These results highlight the importance of including deforestation in future climate agreements. They also imply that land manager responses to expected shifts in tropical precipitation may critically determine the strength of climate-carbon cycle feedbacks during the 21st century.


Assuntos
Clima , Conservação dos Recursos Naturais , Incêndios , Ásia , Monóxido de Carbono/análise , Secas , Ecossistema , Comunicações Via Satélite , Sphagnopsida
2.
Science ; 264(5155): 74-7, 1994 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17778137

RESUMO

Three regions of the northern mid-latitudes, the continental-scale metro-agro-plexes, presently dominate global industrial and agricultural productivity. Although these regions cover only 23 percent of the Earth's continents, they account for most of the world's commercial energy consumption, fertilizer use, food-crop production, and food exports. They also account for more than half of the world's atmospheric nitrogen oxide (NOx,) emissions and, as a result, are prone to ground-level ozone (O(3)) pollution during the summer months. On the basis of a global simulation of atmospheric reactive nitrogen compounds, it is estimated that about 10 to 35 percent of the world's grain production may occur in parts of these regions where ozone pollution may reduce crop yields. Exposure to yield-reducing ozone pollution may triple by 2025 if rising anthropogenic NOx emissions are not abated.

3.
Science ; 356(6345): 1356-1362, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28663495

RESUMO

Fire is an essential Earth system process that alters ecosystem and atmospheric composition. Here we assessed long-term fire trends using multiple satellite data sets. We found that global burned area declined by 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area remained robust after adjusting for precipitation variability and was largest in savannas. Agricultural expansion and intensification were primary drivers of declining fire activity. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. Fire models were unable to reproduce the pattern and magnitude of observed declines, suggesting that they may overestimate fire emissions in future projections. Using economic and demographic variables, we developed a conceptual model for predicting fire in human-dominated landscapes.


Assuntos
Clima , Ecossistema , Incêndios , Imagens de Satélites , Agricultura , Sequestro de Carbono , Conservação dos Recursos Naturais , Atividades Humanas , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA