Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(11): 3801-3815, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37074382

RESUMO

The biology and biotechnology of bacteriophages have been extensively studied in recent years to explore new and environmentally friendly methods of controlling phytopathogenic bacteria. Pseudomonas syringae pv. tomato (Pst) is responsible for bacterial speck disease in tomato plants, leading to decreased yield. Disease management strategies rely on the use of copper-based pesticides. The biological control of Pst with the use of bacteriophages could be an alternative environmentally friendly approach to diminish the detrimental effects of Pst in tomato cultivations. The lytic efficacy of bacteriophages can be used in biocontrol-based disease management strategies. Here, we report the isolation and complete characterization of a bacteriophage, named Medea1, which was also tested in planta against Pst, under greenhouse conditions. The application of Medea1 as a root drenching inoculum or foliar spraying reduced 2.5- and fourfold on average, respectively, Pst symptoms in tomato plants, compared to a control group. In addition, it was observed that defense-related genes PR1b and Pin2 were upregulated in the phage-treated plants. Our research explores a new genus of Pseudomonas phages and explores its biocontrol potential against Pst, by utilizing its lytic nature and ability to trigger the immune response of plants. KEY POINTS: • Medea1 is a newly reported bacteriophage against Pseudomonas syringae pv. tomato having genomic similarities with the phiPSA1 bacteriophage • Two application strategies were reported, one by root drenching the plants with a phage-based solution and one by foliar spraying, showing up to 60- and 6-fold reduction of Pst population and disease severity in some cases, respectively, compared to control • Bacteriophage Medea1 induced the expression of the plant defense-related genes Pin2 and PR1b.


Assuntos
Bacteriófagos , Solanum lycopersicum , Pseudomonas syringae , Bacteriófagos/genética , Doenças das Plantas/prevenção & controle , Plantas
2.
J Fish Dis ; 46(1): 61-66, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36116014

RESUMO

A fish kill was recorded at the Aposelemis Dam, which is the main reservoir of drinking water for the island of Crete in Greece. Hundreds of goldfish were found dead at a side stream which provides water to the reservoir. The affected fish had been entrapped in a small pond at the side of the stream with practically zero water renewal as the event occurred in August which is a dry season for the island of Crete. The event was alarming for the local community since anthropogenic pollution was initially suspected which could pose a significant human health threat. Following examination of the fish, the mortality was attributed to heavy infection by the parasitic flagellate, Ichthyobodo sp., whilst no pollutants were detected. The parasite was studied through light and scanning electron microscopy and was identified molecularly.


Assuntos
Doenças dos Peixes , Animais , Humanos , Grécia , Água
3.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175906

RESUMO

Vibrio harveyi, a significant opportunistic marine pathogen, has been a challenge to the aquaculture industry, leading to severe economical and production losses. Phage therapy has been an auspicious approach in controlling such bacterial infections in the era of antimicrobial resistance. In this study, we isolated and fully characterized a novel strain-specific phage, vB_VhaS_MAG7, which infects V. harveyi MM46, and tested its efficacy as a therapeutic agent in challenged gilthead seabream larvae. vB_VhaS_MAG7 is a tailed bacteriophage with a double-stranded DNA of 49,315 bp. No genes linked with virulence or antibiotic resistance were harbored in the genome. The phage had a remarkably large burst size of 1393 PFU cell-1 and showed strong lytic ability in in vitro assays. When applied in phage therapy trials in challenged gilthead seabream larvae, vB_VhaS_MAG7 was capable of improving the survival of the larvae up to 20%. Due to its distinct features and safety, vB_VhaS_MAG7 is considered a suitable candidate for applied phage therapy.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Vibrio , Animais , Bacteriófagos/genética , Vibrio/genética , Infecções Bacterianas/genética , Peixes/genética , Genoma Viral
4.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835353

RESUMO

Bacteriophages are the most abundant biological entities in the oceans and play key roles in bacterial activity, diversity and evolution. While extensive research has been conducted on the role of tailed viruses (Class: Caudoviricetes), very little is known about the distribution and functions of the non-tailed viruses (Class: Tectiliviricetes). The recent discovery of the lytic Autolykiviridae family demonstrated the potential importance of this structural lineage, emphasizing the need for further exploration of the role of this group of marine viruses. Here, we report the novel family of temperate phages under the class of Tectiliviricetes, which we propose to name "Asemoviridae" with phage NO16 as a main representative. These phages are widely distributed across geographical regions and isolation sources and found inside the genomes of at least 30 species of Vibrio, in addition to the original V. anguillarum isolation host. Genomic analysis identified dif-like sites, suggesting that NO16 prophages recombine with the bacterial genome based on the XerCD site-specific recombination mechanism. The interactions between the NO16 phage and its V. anguillarum host were linked to cell density and phage-host ratio. High cell density and low phage predation levels were shown to favor the temperate over the lytic lifestyle for NO16 viruses, and their spontaneous induction rate was highly variable between different V. anguillarum lysogenic strains. NO16 prophages coexist with the V. anguillarum host in a mutualistic interaction by rendering fitness properties to the host, such as increased virulence and biofilm formation through lysogenic conversion, likely contributing to their global distribution.


Assuntos
Bacteriófagos , Vibrio , Lisogenia , Bacteriófagos/genética , Prófagos/genética , Vibrio/genética , Genoma Bacteriano
5.
Fish Shellfish Immunol ; 123: 381-387, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35318138

RESUMO

Aeromonas veronii bv. sobria is an emerging pathogen for the European seabass cultured in the Aegean Sea (Mediterranean) causing significant problems in the Greek and Turkish aquaculture industry since no licensed vaccine is currently available for the disease. A bivalent vaccine was developed based on two phenotypically distinct strains of the pathogen, PDB (motile, pigment-producing strain) and NS (non-motile, non-pigment-producing). The two strains comprising the bivalent vaccine were evaluated as monovalent products in zebrafish before the seabass trials. Challenges using the homologous or the heterologous strain showed that both vaccines were protective with RPS values ranging between 66 and 100% in zebrafish. The bivalent vaccine was then tested in European seabass following dip or intraperitoneal administration. Efficacy was evaluated separately against both strains comprising the bivalent vaccine. Dip vaccination applied to juvenile seabass of 2.5 g average weight provided protection following challenge tests 30 days post vaccination only in one of the two strains tested (strain PDB, RPS: 88%). This was also the case in the injection vaccination of adult seabass of 60 g average weight where the vaccine was effective only against the PDB strain (RPS: 63%). High antibody titers against both strains were found at 30 and 60 days after intraperitoneal vaccination in the adult seabass. The use of zebrafish as a model for vaccine development for aquaculture species is discussed.


Assuntos
Autovacinas , Bass , Doenças dos Peixes , Aeromonas , Aeromonas veronii , Animais , Vacinas Bacterianas , Doenças dos Peixes/prevenção & controle , Vacinas Combinadas , Peixe-Zebra
6.
Arch Virol ; 167(2): 501-516, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35000006

RESUMO

Tailed bacteriophages have been at the center of attention, not only for their ability to infect and kill pathogenic bacteria but also due to their peculiar and intriguing complex contractile tail structure. Tailed bacteriophages with contractile tails are known to have a Myoviridae morphotype and are members of the order Caudovirales. Large bacteriophages with a genome larger than 150 kbp have been studied for their ability to use multiple infection and lysis strategies to replicate more efficiently. On the other hand, smaller bacteriophages with fewer genes are represented in the GenBank database in greater numbers, and have several genes with unknown function. Isolation and molecular characterization of a newly reported bacteriophage named Athena1 revealed that it is a strongly lytic bacteriophage with a genome size of 39,826 bp. This prompted us to perform a comparative genomic analysis of Vibrio myoviruses with a genome size of no more than 50 kbp. The results revealed a pattern of genomic organization that includes sets of genes responsible for virion morphogenesis, replication/recombination of DNA, and lysis/lysogeny switching. By studying phylogenetic gene markers, we were able to draw conclusions about evolutionary events that shaped the genomic mosaicism of these phages, pinpointing the importance of a conserved organization of the genomic region encoding the baseplate protein for successful infection of Gram-negative bacteria. In addition, we propose the creation of new genera for dwarf Vibrio myoviruses. Comparative genomics of phages infecting aquatic bacteria could provide information that is useful for combating fish pathogens in aquaculture, using novel strategies.


Assuntos
Bacteriófagos , Vibrio , Animais , Bacteriófagos/genética , Genoma Viral , Genômica , Família Multigênica , Filogenia , Vibrio/genética
7.
Molecules ; 26(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066575

RESUMO

Despite progress achieved, there is limited available information about the antibacterial activity of constituents of essential oils (EOs) from different medicinal-aromatic plants (MAPs) against fish pathogens and the complex interactions of blended EOs thereof. The present study aimed to investigate possible synergistic antimicrobial effects of EOs from seven Greek MAPs with strong potential against Aeromonas veronii bv. sobria, a fish pathogen associated with aquaculture disease outbreaks. The main objective was to evaluate whether blending of these EOs can lead to increased antimicrobial activity against the specific microorganism. A total of 127 combinations of EOs were prepared and their effect on A. veronii bv. sobria growth was tested in vitro. We examined both the inhibitory and bactericidal activities of the individual EOs and compared them to those of the blended EOs. The vast majority of the investigated combinations exhibited significant synergistic and additive effects, while antagonistic effects were evident only in a few cases, such as the mixtures containing EOs from rosemary, lemon balm and pennyroyal. The combination of EOs from Greek oregano and wild carrot, as well as the combinations of those two with Spanish oregano or savoury were the most promising ones. Overall, Greek oregano, savoury and Spanish oregano EOs were the most effective ones when applied either in pure form or blended with other EOs.


Assuntos
Aeromonas veronii/efeitos dos fármacos , Antibacterianos/farmacologia , Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Animais , Apiaceae , Técnicas de Química Sintética , Daucus carota , Sinergismo Farmacológico , Cromatografia Gasosa-Espectrometria de Massas , Infecções por Bactérias Gram-Negativas/veterinária , Concentração Inibidora 50 , Melissa , Mentha , Testes de Sensibilidade Microbiana , Origanum , Plantas Medicinais/química , Rosmarinus , Satureja
8.
Fish Physiol Biochem ; 47(6): 1777-1792, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34515893

RESUMO

The histological process of gonadal differentiation, together with the endocrine changes of sex steroid hormones and some of their precursors, was studied in hatchery-produced greater amberjack Seriola dumerili from 101 until 408 days post-hatching (dph), with samplings conducted every 50 days. Histological processing showed that sex differentiation began at 101 dph with the formation of the ovarian cavity in females, while the presumptive males did not yet contain any germ cells in their gonad. At 150 dph, we observed the first germ cells in the developing testes. Sex differentiation in almost all sampled individuals was complete at 408 dph. No size dimorphism was observed between the sexes, and the sex ratio was 1:1, suggesting that there was no influence of early rearing in captivity on sex differentiation. Plasma concentrations of adrenosterone (Ad), androstenedione (Δ4), 11-ketotestosterone (11ΚΤ), testosterone (Τ), estradiol (Ε2), progesterone (P4) and 17,20ß-dihydroxy-4-pregnen-3-one (17,20ßP) were measured in males and females with the use of liquid chromatography tandem mass spectrometry (LC-MS/MS) to examine their role in the sex differentiation process. From the seven hormones, the only one that exhibited differences between the sexes was 11-KT and the plasma 11-KT concentration was found to be a useful indication of greater amberjack sex. Variations were observed in the mean values of Ad, Δ4, 11-KT, T, P4 and 17,20ßP over time in one or both sexes, indicating their involvement in the sex differentiation process.


Assuntos
Perciformes , Diferenciação Sexual , Animais , Aquicultura , Cromatografia Líquida , Feminino , Hormônios Esteroides Gonadais/sangue , Gônadas , Masculino , Espectrometria de Massas em Tandem
9.
Molecules ; 25(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905915

RESUMO

The administration of antibiotics in aquaculture has raised concern about the impact of their overuse in marine ecosystems, seafood safety and consumers' health. This "green consumerism" has forced researchers to find new alternatives against fish pathogens. The present study focused on 12 Mediterranean medicinal-aromatic plants as potential antimicrobials and antioxidant agents that could be used in fish aquaculture. In vitro assays showed that the essential oils (EOs) from all studied plants had anti-bacterial and antioxidant properties, with their efficacy being dependent on their chemical composition. More specifically, EOs rich in carvacrol, p-cymene and γ-terpinene exhibited not only the strongest inhibitory activity against the growth of bacterial pathogens (inhibitory concentration: 26-88 µg mL-1), but also the greatest total antioxidant capacity (ABTS: 2591-5879 µmole mL-1; CUPRAC: 931-2733 µmole mL-1). These compounds were mainly found in the EOs from Greek oregano (Origanum vulgare subsp. hirtum), Spanish oregano (Thymbra capitata) and savoury (Satureja thymbra) collected from cultivations in Greece. The specific EOs stand out as promising candidates for the treatment of bacterial diseases and oxidative stress in farmed fish. Further in vivo experiments are needed to fully understand the effects of EO dietary supplementation on fish farming processes.


Assuntos
Antibacterianos/química , Antioxidantes/química , Bactérias/efeitos dos fármacos , Peixes/microbiologia , Lamiaceae/química , Óleos Voláteis/química , Animais , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Aquicultura , Monoterpenos Cicloexânicos/farmacologia , Cimenos/farmacologia , Peixes/crescimento & desenvolvimento , Grécia , Óleos Voláteis/farmacologia , Origanum/química , Óleos de Plantas/química , Plantas Medicinais/química , Satureja/química
10.
Arch Microbiol ; 200(5): 707-718, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29372278

RESUMO

Vibrio alginolyticus is a common marine bacterium implicated in disease outbreaks in marine farmed fish and invertebrates. Due to the inappropriate use of antibiotics in aquaculture, alternative therapies have been proposed. One of the most promising options is the use of lytic bacteriophages to control pathogenic bacteria. This work describes the isolation and characterization of a lytic phage (VEN) against a V. alginolyticus strain (V2) isolated from a disease outbreak in common dentex (Dentex dentex) cultured at the Hellenic Centre for Marine Research (HCMR) in Crete, Greece. The bacteriophage is morphologically similar to phages from Podoviridae family and remained stable for 1 year at 4 °C and over 1 h when kept at 50 °C. VEN was able to lyse the host bacteria at several multiplicity of infection (MOI) (0.1-100) in liquid cultures. However, it was unable to infect other V. alginolyticus strains. Its genome consists of 44,603 bp with a GC content of 43.5%, while sequence analysis revealed the presence of 54 potential ORFs with a T7-like genomic organization. Almost 65% of the predicted ORFs presented homology with proteins of the vibriophages Vc1 and phi-A318 infecting Vibrio cyclitrophicus and Vibrio alginolyticus, respectively. Phylogenetic analysis applying the amino acid sequence of the large terminase subunit confirmed the close relationship of these phages. Furthermore, the comparison of the RNA polymerase of these phages revealed that the motifs A, B and C related to the catalytic activity and the recognition loop related to promotor identification were also conserved. VEN has an obligate lytic life cycle demonstrated by experimental data and genomic analysis. These results suggest that VEN may provide a good candidate to control recurrent diseases caused by V. alginolyticus at HCMR.


Assuntos
Podoviridae/genética , Vibrio alginolyticus/virologia , Animais , Aquicultura , Composição de Bases , RNA Polimerases Dirigidas por DNA/genética , Doenças dos Peixes/microbiologia , Genoma Viral , Tipagem Molecular , Fases de Leitura Aberta , Filogenia , Podoviridae/isolamento & purificação , Vibrioses/microbiologia , Vibrioses/veterinária , Proteínas Virais/genética
11.
BMC Vet Res ; 11: 155, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26193880

RESUMO

BACKGROUND: Edwardsiella tarda, is a serious bacterial pathogen affecting a broad range of aquaculture fish species. The bacterium has also been reported as a human pathogen, however recent studies have dissociated the fish pathogenic Edwardsiella from those isolated from humans by placing them in a new species, E. piscicida. Here we report the first case of Edwardsiellosis in cultured sharpsnout sea breams, Diplodus puntazzo in Greece. CASE PRESENTATION: The disease has affected cultured sharpsnout sea breams of a commercial fish farm in a single location in East Greece. Two populations of sharpsnout sea breams stocked in two consecutive years in floating cages presented signs of disease which included nodules and abscesses in spleen and kidney, morbidity and cumulative mortality reaching 5.3 %. Using microbiological, biochemical and molecular tools we have identified Edwardsiella sp. as the main aetiological factor of the disease. Following phylogenetic analysis the bacterial isolates are grouped with the newly described Edwardsiella piscicida species. CONCLUSIONS: This is the first report of Edwardsiellosis in this species but most importantly in sea cage-cultured fish in the Mediterranean which may pose a serious threat for aquaculture fish species in this region.


Assuntos
Edwardsiella tarda/isolamento & purificação , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , Dourada , Animais , Aquicultura , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/epidemiologia , Grécia/epidemiologia , Região do Mediterrâneo
12.
Syst Parasitol ; 92(3): 211-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26446543

RESUMO

A new myxosporean parasite, Zschokkella candia n. sp., from the gall-bladder of the wild parrotfish Sparisoma cretense (L.) (Perciformes: Scaridae) is described based on light and scanning electron microscopy. Mature spores are elliptical, with mean dimensions 11.2 ± 0.5 × 7.8 ± 0.1 µm and possess spherical polar capsules with mean diameter of 2.3 ± 0.3 µm. The new species is differentiated from other similar species of the genus based on spore morphology, its coelozoic life-style and molecular data. The phylogenetic tree constructed using maximum likelihood analysis of small subunit (SSU) rDNA sequence data complements the characterisation of Zschokkella candia n. sp. by defining its phylogenetic position among the species of Zschokkella Auerbach, 1909 sequenced to date. The phylogenetic analysis supports the existing knowledge on the complicated polyphyletic relationships among the members of the genus Zschokkella.


Assuntos
Myxozoa/anatomia & histologia , Myxozoa/classificação , Filogenia , Animais , Vesícula Biliar/parasitologia , Grécia , Oceanos e Mares , Perciformes/parasitologia , RNA Ribossômico 18S/genética , Especificidade da Espécie
13.
Parasitol Res ; 112(5): 2055-61, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23455943

RESUMO

Two members of Aulopiformes (grinners) were examined for myxosporean parasites in their gallbladders. Synodus saurus and Aulopus filamentosus from Cretan Sea, Greece were infected by Ceratomyxa parasites which are described in this paper. Both species of Ceratomyxa are new and referred for the first time as Ceratomyxa cretensis n.sp. and Ceratomyxa filamentosi n.sp. The new species are described morphologically by light and scanning electron microscopy analysis, and characterized genetically by sequencing the small subunit (SSU) rDNA. The SSU rDNA sequences obtained from the two novel Ceratomyxa species were used for the construction of a phylogenetic tree with all the available Ceratomyxa SSU rDNA sequences.


Assuntos
Doenças dos Peixes/parasitologia , Peixes/parasitologia , Vesícula Biliar/parasitologia , Myxozoa/classificação , Myxozoa/isolamento & purificação , Animais , DNA de Protozoário/análise , DNA de Protozoário/genética , DNA Ribossômico/análise , DNA Ribossômico/genética , Peixes/classificação , Grécia , Microscopia Eletrônica de Varredura , Myxozoa/genética , Myxozoa/ultraestrutura , Doenças Parasitárias em Animais/parasitologia , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Esporos de Protozoários/ultraestrutura
14.
Microorganisms ; 11(5)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37317171

RESUMO

A monitoring program to follow vibriosis incidents in the Greek marine aquaculture was implemented over the past 13 years. 273 isolates, from various cases originating from eight regions and nine hosts, were collected and characterized. The main aquaculture species of the survey were the European seabass (Dicentrarchus labrax) and the gilthead seabream (Sparus aurata). Various species of Vibrionaceae were associated with vibriosis. Vibrio harveyi had the highest prevalence and was isolated throughout the year from all hosts. During the warm months, Vibrio harveyi prevailed with frequent co-isolations of Photobacterium damselae subsp. damselae and Vibrio alginolyticus, while during spring, other Vibrio species were more abundant, such as Vibrio lentus, Vibrio cyclitrophicus, and Vibrio gigantis. Phylogenetic analysis using the mreB gene and the metabolic fingerprint of the isolates showed great variability within the species of the collection. The severity of the disease and the frequency of outbreaks make vibriosis (that is, mainly attributed to V. harveyi) an important concern for the regional aquaculture sector.

15.
Pathogens ; 12(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003801

RESUMO

We studied the phenotypic and genomic characteristics related to the virulence and antibiotic resistance of two Aeromonas strains, which were co-isolated before an outbreak of Aeromonas veronii among diseased seabass on Agathonisi Island, Greece, in April 2015. The first strain, AG2.13.2, is a potentially pathogenic mesophilic variant of Aeromonas salmonicida, and the second, AG2.13.5, corresponds to an Aeromonas rivipollensis related to A. rivipollensis KN-Mc-11N1 with an ANI value of 97.32%. AG2.13.2 lacks the type III secretion system just like other mesophilic strains of A. salmonicida. This characteristic has been associated with lower virulence. However, the genome of AG2.13.2 contains other important virulence factors such as type II and type VI secretion systems, and toxins such as rtxA, aerolysin aer/act, and different types of hemolysins. The strain also carries several genes associated with antibiotic resistance such as the tetE efflux pump, and exhibits resistance to tetracycline, ampicillin, and oxolinic acid. In an in vivo challenge test with gilthead seabream larvae, the A. veronii bv sobria strain AG5.28.6 exhibited the highest virulence among all tested strains. Conversely, both A. salmonicida and A. rivipollensis showed minimal virulence when administered alone. Interestingly, when A. veronii bv sobria AG5.28.6 was co-administered with A. rivipollensis, the larvae survival probability increased compared to those exposed to A. veronii bv sobria AG5.28.6 alone. This finding indicates an antagonistic interaction between A. veronii bv sobria AG5.28.6 and A. rivipollensis AG2.13.5. The co-administration of A. veronii bv sobria AG5.28.6 with Aeromonas salmonicida did not yield distinct survival probabilities. Our results validate that the primary pathogen responsible for European seabass aeromoniasis is Aeromonas veronii bv sobria.

16.
Microorganisms ; 11(9)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37764117

RESUMO

Bacteria employ a wide range of molecular mechanisms to confer resistance to bacteriophages, and these mechanisms are continuously being discovered and characterized. However, there are instances where certain bacterial species, despite lacking these known mechanisms, can still develop bacteriophage resistance through intricate metabolic adaptation strategies, potentially involving mutations in transcriptional regulators or phage receptors. Vibrio species have been particularly useful for studying the orchestrated metabolic responses of Gram-negative marine bacteria in various challenges. In a previous study, we demonstrated that Vibrio alginolyticus downregulates the expression of specific receptors and transporters in its membrane, which may enable the bacterium to evade infection by lytic bacteriophages. In our current study, our objective was to explore how the development of bacteriophage resistance in Vibrio species disrupts the quorum-sensing cascade, subsequently affecting bacterial physiology and metabolic capacity. Using a real-time quantitative PCR (rt-QPCR) platform, we examined the expression pattern of quorum-sensing genes, auto-inducer biosynthesis genes, and cell density regulatory proteins in phage-resistant strains. Our results revealed that bacteriophage-resistant bacteria downregulate the expression of quorum-sensing regulatory proteins, such as LuxM, LuxN, and LuxP. This downregulation attenuates the normal perception of quorum-sensing peptides and subsequently diminishes the expression of cell density regulatory proteins, including LuxU, aphA, and LuxR. These findings align with the diverse phenotypic traits observed in the phage-resistant strains, such as altered biofilm formation, reduced planktonic growth, and reduced virulence. Moreover, the transcriptional depletion of aphA, the master regulator associated with low cell density, was linked to the downregulation of genes related to virulence. This phenomenon appears to be phage-specific, suggesting a finely tuned metabolic adaptation driven by phage-host interaction. These findings contribute to our understanding of the role of Vibrio species in microbial marine ecology and highlight the complex interplay between phage resistance, quorum sensing, and bacterial physiology.

17.
Front Microbiol ; 14: 1078669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925475

RESUMO

Tenacibaculum larymnensis sp. nov., a novel species of the Tenacibaculum genus was isolated from a commercial fish hatchery in Greece. The novel species is phylogenetically close to T. discolor and was biochemically and genetically characterized. The genome of T. larymnensis has 3.66 Mbps length, 31.83% GC content and the genomic analysis demonstrated that it harbors a wide enzymatic repertoire suggestive of increased degrading capacity but also several virulence factors including hemolysins, secretion systems, transporters, siderophores, pili and extracellular proteins. Using the novel strain, a virulent bacteriophage designated as Tenacibaculum phage Larrie was isolated and characterized. Larrie is a novel Siphovirus with relatively large genome, 77.5 kbps with 111 ORFs, a GC content of 33.7% and an exclusively lytic lifestyle. The new phage-host system can serve as an efficient model to study microbial interactions in the aquatic environment which contribute to the nutrient cycling.

18.
Pathogens ; 11(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35745484

RESUMO

Due to the emergence of multidrug-resistant bacteria, commonly known as "superbugs", phage therapy for the control of bacterial diseases rose in popularity. In this context, the use of phages for the management of many important bacterial diseases in the aquaculture environment is auspicious. Vibrio harveyi, a well-known and serious bacterial pathogen, is responsible for many disease outbreaks in aquaculture, resulting in huge economic and production losses. We isolated and fully characterized a novel bacteriophage, Vibrio phage Virtus, infecting V. harveyi strain VH2. Vibrio phage Virtus can infect a wide spectrum of Vibrio spp., including strains of V. harveyi, V. owensii, V. campbellii, V. parahaemolyticus, and V. mediterranei. It has a latent period of 40 min with an unusually high burst size of 3200 PFU/cell. Vibrio phage Virtus has a double-stranded DNA of 82,960 base pairs with 127 predicted open reading frames (ORFs). No virulence, antibiotic resistance, or integrase-encoding genes were detected. In vivo phage therapy trials in gilthead seabream, Sparus aurata, larvae demonstrated that Vibrio phage Virtus was able to significantly improve the survival of larvae for five days at a multiplicity of infection (MOI) of 10, which suggests that it can be an excellent candidate for phage therapy.

19.
Pathogens ; 11(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35456096

RESUMO

Epitheliocystis is a disease caused by a wide variety of host-specific intracellular bacteria infecting fish gills. In the Mediterranean Sea, epitheliocystis has been recently associated with a novel genus of beta-proteobacteria, the Ca. Ichthyocystis genus. In the present study, we report a case of epitheliocystis in a wild-caught specimen of pompano Trachinotus ovatus in Crete, Greece. Molecular analysis of partial 16s rRNA sequence led to the discovery of a putative novel species of the Ca. Ichthyocystis genus. Investigation of the phylogenetic relationship between closely related sequences deposited in NCBI suggests that bacterial ancestors in gilthead seabream might have a pivotal role in the differentiation of genus.

20.
Pathogens ; 11(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36014969

RESUMO

Vibrio alginolyticus is an important pathogen of marine animals and has been the target of phage therapy applications in marine aquaculture for many years. Here, we report the isolation and partial characterization of a novel species of the Siphoviridae family, the Vibrio phage Artemius. The novel phage was species-specific and could only infect strains of V. alginolyticus. It could efficiently reduce the growth of the host bacterium at various multiplicities of infection as assessed by an in vitro lysis assay. It had a genome length of 43,349 base pairs. The complete genome has double-stranded DNA with a G + C content of 43.61%. In total, 57 ORFs were identified, of which 19 were assigned a predicted function. A genomic analysis indicated that Vibrio phage Artemius is lytic and does not harbor genes encoding toxins and antibiotic resistance determinants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA