Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Bioorg Med Chem ; 37: 116116, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33799173

RESUMO

The K+-sparing diuretic amiloride elicits anticancer activities in multiple animal models. During our recent medicinal chemistry campaign aiming to identify amiloride analogs with improved properties for potential use in cancer, we discovered novel 6-(hetero)aryl-substituted amiloride and 5-(N,N-hexamethylene)amiloride (HMA) analogs with up to 100-fold higher potencies than the parent compounds against urokinase plasminogen activator (uPA), one of amiloride's putative anticancer targets, and no diuretic or antikaliuretic effects. Here, we report the systematic evaluation of structure-property relationships (lipophilicity, aqueous solubility and in vitro metabolic stability in human and mouse liver microsomes) in twelve matched pair analogs selected from our 6-substituted amiloride and HMA libraries. Mouse plasma stability, plasma protein binding, Caco-2 cell permeability, cardiac ion channel activity and pharmacokinetics in mice (PO and IV) and rats (IV) are described alongside amiloride and HMA comparators for a subset of the four most promising matched-pair analogs. The findings combined with earlier uPA activity/selectivity and other data ultimately drove selection of two analogs (AA1-39 and AA1-41) that showed efficacy in separate mouse cancer metastasis studies.


Assuntos
Amilorida/análogos & derivados , Amilorida/farmacologia , Antineoplásicos/farmacologia , Amilorida/farmacocinética , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Células CACO-2 , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/efeitos dos fármacos , Estrutura Molecular , Ratos Sprague-Dawley , Relação Estrutura-Atividade
2.
Malar J ; 19(1): 1, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31898492

RESUMO

BACKGROUND: Modelling and simulation are being increasingly utilized to support the discovery and development of new anti-malarial drugs. These approaches require reliable in vitro data for physicochemical properties, permeability, binding, intrinsic clearance and cytochrome P450 inhibition. This work was conducted to generate an in vitro data toolbox using standardized methods for a set of 45 anti-malarial drugs and to assess changes in physicochemical properties in relation to changing target product and candidate profiles. METHODS: Ionization constants were determined by potentiometric titration and partition coefficients were measured using a shake-flask method. Solubility was assessed in biorelevant media and permeability coefficients and efflux ratios were determined using Caco-2 cell monolayers. Binding to plasma and media proteins was measured using either ultracentrifugation or rapid equilibrium dialysis. Metabolic stability and cytochrome P450 inhibition were assessed using human liver microsomes. Sample analysis was conducted by LC-MS/MS. RESULTS: Both solubility and fraction unbound decreased, and permeability and unbound intrinsic clearance increased, with increasing Log D7.4. In general, development compounds were somewhat more lipophilic than legacy drugs. For many compounds, permeability and protein binding were challenging to assess and both required the use of experimental conditions that minimized the impact of non-specific binding. Intrinsic clearance in human liver microsomes was varied across the data set and several compounds exhibited no measurable substrate loss under the conditions used. Inhibition of cytochrome P450 enzymes was minimal for most compounds. CONCLUSIONS: This is the first data set to describe in vitro properties for 45 legacy and development anti-malarial drugs. The studies identified several practical methodological issues common to many of the more lipophilic compounds and highlighted areas which require more work to customize experimental conditions for compounds being designed to meet the new target product profiles. The dataset will be a valuable tool for malaria researchers aiming to develop PBPK models for the prediction of human PK properties and/or drug-drug interactions. Furthermore, generation of this comprehensive data set within a single laboratory allows direct comparison of properties across a large dataset and evaluation of changing property trends that have occurred over time with changing target product and candidate profiles.


Assuntos
Antimaláricos/metabolismo , Antimaláricos/farmacologia , Desenvolvimento de Medicamentos , Descoberta de Drogas , Antimaláricos/sangue , Antimaláricos/normas , Células CACO-2 , Cromatografia Líquida , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Humanos , Cinética , Microssomos Hepáticos , Permeabilidade , Ligação Proteica , Solubilidade , Espectrometria de Massas em Tandem
3.
Pharm Res ; 35(11): 210, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30225649

RESUMO

PURPOSE: To examine the utility of human plasma as an assay medium in Caco-2 permeability studies to overcome poor mass balance and inadequate sink conditions frequently encountered with lipophilic compounds. METHODS: Caco-2 permeability was assessed for reference compounds with known transport mechanisms using either pH 7.4 buffer or human plasma as the assay medium in both the apical and basolateral chambers. When using plasma, Papp values were corrected for the unbound fraction in the donor chamber. The utility of the approach was assessed by measuring the permeability of selected antimalarial compounds using the two assay media. RESULTS: Caco-2 cell monolayer integrity and P-gp transporter function were unaffected by the presence of human plasma in the donor and acceptor chambers. For many of the reference compounds having good mass balance with buffer as the medium, higher Papp values were observed with plasma, likely due to improved acceptor sink conditions. The lipophilic antimalarial compounds exhibited low mass balance with buffer, however the use of plasma markedly improved mass balance allowing the determination of more reliable Papp values. CONCLUSIONS: The results support the utility of human plasma as an alternate Caco-2 assay medium to improve mass balance and permeability measurements for lipophilic compounds.


Assuntos
Antimaláricos/farmacocinética , Células Epiteliais/metabolismo , Absorção Intestinal , Plasma/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antimaláricos/química , Proteínas Sanguíneas/metabolismo , Células CACO-2 , Técnicas de Cultura de Células , Humanos , Lipídeos/química , Lipídeos/farmacocinética , Permeabilidade , Farmacocinética
4.
Proc Natl Acad Sci U S A ; 109(39): 15936-41, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23019377

RESUMO

Toxoplasma gondii is a widely distributed protozoan pathogen that causes devastating ocular and central nervous system disease. We show that the endochin-like quinolone (ELQ) class of compounds contains extremely potent inhibitors of T. gondii growth in vitro and is effective against acute and latent toxoplasmosis in mice. We screened 50 ELQs against T. gondii and selected two lead compounds, ELQ-271 and ELQ-316, for evaluation. ELQ-271 and ELQ-316, have in vitro IC(50) values of 0.1 nM and 0.007 nM, respectively. ELQ-271 and ELQ-316 have ED(50) values of 0.14 mg/kg and 0.08 mg/kg when administered orally to mice with acute toxoplasmosis. Moreover, ELQ-271 and ELQ-316 are highly active against the cyst form of T. gondii in mice at low doses, reducing cyst burden by 76-88% after 16 d of treatment. To investigate the ELQ mechanism of action against T. gondii, we demonstrate that endochin and ELQ-271 inhibit cytochrome c reduction by the T. gondii cytochrome bc(1) complex at 8 nM and 31 nM, respectively. We also show that ELQ-271 inhibits the Saccharomyces cerevisiae cytochrome bc(1) complex, and an M221Q amino acid substitution in the Q(i) site of the protein leads to >100-fold resistance. We conclude that ELQ-271 and ELQ-316 are orally bioavailable drugs that are effective against acute and latent toxoplasmosis, likely acting as inhibitors of the Q(i) site of the T. gondii cytochrome bc(1) complex.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Quinolinas/farmacologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Feminino , Humanos , Camundongos , Proteínas de Protozoários/antagonistas & inibidores , Ratos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Toxoplasma/enzimologia , Toxoplasmose/enzimologia
5.
Bioorg Med Chem Lett ; 23(2): 455-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23245512

RESUMO

A series of novel glycopyranosyl azides were synthesised wherein the carbohydrate moiety was peracylated with four acetyl, propionyl, butanoyl, pentanoyl (valeryl) or 3-methylbutanoyl (isovaleryl) ester linked groups. A panel of glycoconjugates was synthesised from these glycopyranosyl azides using copper-catalysed azide-alkyne cycloaddition. The in vitro metabolic stability, plasma stability and plasma protein binding was then measured to establish the impact of the different acyl group when presented on a common scaffold. The acetyl, propionyl and butanoyl esters exhibited metabolism consistent with esterase processing, and various mono-, di- and tri-acylated hydrolysis products as well as the fully hydrolysed compound were detected. In contrast, the pentanoyl and 3-methylbutanoyl esters were stable.


Assuntos
Azidas/síntese química , Glicoconjugados/síntese química , Acilação , Azidas/química , Azidas/farmacologia , Catálise , Cobre/química , Estabilidade de Medicamentos , Glicoconjugados/química , Glicoconjugados/farmacologia , Humanos , Ligação Proteica , Albumina Sérica/química
6.
ACS Infect Dis ; 9(10): 1964-1980, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37695781

RESUMO

We discovered dibenzannulated medium-ring keto lactams (11,12-dihydro-5H-dibenzo[b,g]azonine-6,13-diones) as a new antimalarial chemotype. Most of these had chromatographic LogD7.4 values ranging from <0 to 3 and good kinetic solubilities (12.5 to >100 µg/mL at pH 6.5). The more polar compounds in the series (LogD7.4 values of <2) had the best metabolic stability (CLint values of <50 µL/min/mg protein in human liver microsomes). Most of the compounds had relatively low cytotoxicity, with IC50 values >30 µM, and there was no correlation between antiplasmodial activity and cytotoxicity. The four most potent compounds had Plasmodium falciparum IC50 values of 4.2 to 9.4 nM and in vitro selectivity indices of 670 to >12,000. They were more than 4 orders-of-magnitude less potent against three other protozoal pathogens (Trypanosoma brucei rhodesiense, Trypanosoma cruzi, and Leishmania donovani) but did have relatively high potency against Toxoplasma gondii, with IC50 values ranging from 80 to 200 nM. These keto lactams are converted into their poorly soluble 4(1H)-quinolone transannular condensation products in vitro in culture medium and in vivo in mouse blood. The similar antiplasmodial potencies of three keto lactam-quinolone pairs suggest that the quinolones likely contribute to the antimalarial activity of the lactams.


Assuntos
Antimaláricos , Quinolonas , Trypanosoma cruzi , Camundongos , Animais , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Lactamas , Trypanosoma brucei rhodesiense
7.
Sci Transl Med ; 15(726): eadh9902, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091406

RESUMO

New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.


Assuntos
Leishmaniose Visceral , Leishmaniose , Ratos , Animais , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Modelos Animais de Doenças
8.
Front Chem ; 10: 861209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494659

RESUMO

The COVID-19 pandemic continues unabated, emphasizing the need for additional antiviral treatment options to prevent hospitalization and death of patients infected with SARS-CoV-2. The papain-like protease (PLpro) domain is part of the SARS-CoV-2 non-structural protein (nsp)-3, and represents an essential protease and validated drug target for preventing viral replication. PLpro moonlights as a deubiquitinating (DUB) and deISGylating enzyme, enabling adaptation of a DUB high throughput (HTS) screen to identify PLpro inhibitors. Drug repurposing has been a major focus through the COVID-19 pandemic as it may provide a fast and efficient route for identifying clinic-ready, safe-in-human antivirals. We here report our effort to identify PLpro inhibitors by screening the ReFRAME library of 11,804 compounds, showing that none inhibit PLpro with any reasonable activity or specificity to justify further progression towards the clinic. We also report our latest efforts to improve piperidine-scaffold inhibitors, 5c and 3k, originally developed for SARS-CoV PLpro. We report molecular details of binding and selectivity, as well as in vitro absorption, distribution, metabolism and excretion (ADME) studies of this scaffold. A co-crystal structure of SARS-CoV-2 PLpro bound to inhibitor 3k guides medicinal chemistry efforts to improve binding and ADME characteristics. We arrive at compounds with improved and favorable solubility and stability characteristics that are tested for inhibiting viral replication. Whilst still requiring significant improvement, our optimized small molecule inhibitors of PLpro display decent antiviral activity in an in vitro SARS-CoV-2 infection model, justifying further optimization.

9.
ACS Infect Dis ; 7(7): 1885-1893, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34101429

RESUMO

OZ439 is a potent synthetic ozonide evaluated for the treatment of uncomplicated malaria. The metabolite profile of OZ439 was characterized in vitro using human liver microsomes combined with LC/MS-MS, chemical derivatization, and metabolite synthesis. The primary biotransformations were monohydroxylation at the three distal carbon atoms of the spiroadamantane substructure, with minor contributions from N-oxidation of the morpholine nitrogen and deethylation cleavage of the morpholine ring. Secondary transformations resulted in the formation of dihydroxylation metabolites and metabolites containing both monohydroxylation and morpholine N-oxidation. With the exception of two minor metabolites, none of the other metabolites had appreciable antimalarial activity. Reaction phenotyping indicated that CYP3A4 is the enzyme responsible for the metabolism of OZ439, and it was found to inhibit CYP3A via both direct and mechanism-based inhibition. Elucidation of the metabolic pathways and kinetics will assist with efforts to predict potential metabolic drug-drug interactions and support physiologically based pharmacokinetic (PBPK) modeling.


Assuntos
Antimaláricos , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Humanos , Microssomos Hepáticos , Peróxidos
10.
J Med Chem ; 64(17): 12582-12602, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34437804

RESUMO

A phenotypic high-throughput screen allowed discovery of quinazolinone-2-carboxamide derivatives as a novel antimalarial scaffold. Structure-activity relationship studies led to identification of a potent inhibitor 19f, 95-fold more potent than the original hit compound, active against laboratory-resistant strains of malaria. Profiling of 19f suggested a fast in vitro killing profile. In vivo activity in a murine model of human malaria in a dose-dependent manner constitutes a concomitant benefit.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Quinazolinonas/farmacologia , Administração Oral , Animais , Humanos , Camundongos , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Quinazolinonas/química , Relação Estrutura-Atividade
11.
J Med Chem ; 64(9): 6085-6136, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876936

RESUMO

Dihydroorotate dehydrogenase (DHODH) has been clinically validated as a target for the development of new antimalarials. Experience with clinical candidate triazolopyrimidine DSM265 (1) suggested that DHODH inhibitors have great potential for use in prophylaxis, which represents an unmet need in the malaria drug discovery portfolio for endemic countries, particularly in areas of high transmission in Africa. We describe a structure-based computationally driven lead optimization program of a pyrrole-based series of DHODH inhibitors, leading to the discovery of two candidates for potential advancement to preclinical development. These compounds have improved physicochemical properties over prior series frontrunners and they show no time-dependent CYP inhibition, characteristic of earlier compounds. Frontrunners have potent antimalarial activity in vitro against blood and liver schizont stages and show good efficacy in Plasmodium falciparum SCID mouse models. They are equally active against P. falciparum and Plasmodium vivax field isolates and are selective for Plasmodium DHODHs versus mammalian enzymes.


Assuntos
Antimaláricos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pirróis/farmacologia , Animais , Antimaláricos/química , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/química , Camundongos , Plasmodium falciparum/efeitos dos fármacos , Pirróis/química , Relação Estrutura-Atividade
12.
Bioorg Med Chem Lett ; 20(20): 6024-9, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20822904

RESUMO

We report on the discovery of 3-alkylthio-1,2,4-triazine dimers that are potently toxic to Plasmodium falciparum, with single digit nanomolar activity, and up to several thousand-fold lower toxicity to mammalian cells. They are equipotent against chloroquine-resistant strains of P. falciparum.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Triazinas/química , Triazinas/farmacologia , Antimaláricos/síntese química , Antimaláricos/metabolismo , Linhagem Celular , Sobrevivência Celular , Humanos , Malária Falciparum/tratamento farmacológico , Microssomos Hepáticos/metabolismo , Triazinas/síntese química , Triazinas/metabolismo
13.
Biopharm Drug Dispos ; 31(8-9): 450-4, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20865695

RESUMO

The aim of this work was to evaluate the impact of sulfobutyl ether ß-cyclodextrin ((SBE)(7 m)-ß-CD; Captisol(®)) on the in vivo pharmacokinetics of melphalan in rats. Melphalan is a chemically unstable antineoplastic drug which in the current commercial formulation (Alkeran(®) for Injection) has some limitations with regard to solubility, stability and biocompatibility. Melphalan formulations containing (SBE)(7 m)-ß-CD have previously been evaluated in vitro and shown to significantly reduce the rate of degradation and to simplify the reconstitution procedure for lyophilised melphalan. In this study, melphalan was administered intravenously in rats in formulations that either contain (SBE)(7 m)-ß-CD or a co-solvent system (i.e. the commercial formulation). Pharmacokinetic parameters, including half-life, volume of distribution, clearance and extent of renal elimination of melphalan were essentially unchanged between the two formulations. These findings indicate that the pharmacokinetics of melphalan are not altered in the presence of (SBE)(7 m)-ß-CD consistent with a rapid shift in the equilibrium to the fully dissociated drug from the fraction associated with the cyclodextrin host molecule upon intravenous administration.


Assuntos
Antineoplásicos Alquilantes/farmacocinética , Excipientes , Melfalan/farmacocinética , beta-Ciclodextrinas , Animais , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/sangue , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Liofilização , Meia-Vida , Injeções Intravenosas , Masculino , Melfalan/administração & dosagem , Melfalan/sangue , Ratos , Ratos Sprague-Dawley , Solubilidade , Solventes
14.
Front Physiol ; 11: 458, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670074

RESUMO

The intestinal lymphatic system transports fluid, immune cells, dietary lipids, and highly lipophilic drugs from the intestine to the systemic circulation. These transport functions are important to health and when dysregulated contribute to pathology. This has generated significant interest in approaches to deliver drugs to the lymphatics. Most of the current understanding of intestinal lymph flow, and lymphatic lipid and drug transport rates, comes from in vitro studies and in vivo animal studies. In contrast, intestinal lymphatic transport studies in human subjects have been limited. Recently, three surgical patients had cannulation of the thoracic lymph duct for collection of lymph before and during a stepwise increase in enteral feed rate. We compared these data to studies where we previously enterally administered controlled quantities of lipid and the lipophilic drug halofantrine to mice, rats and dogs and collected lymph and blood (plasma). The collected lymph was analyzed to compare lymph flow rate, triglyceride (TG) and drug transport rates, and plasma was analyzed for drug concentrations, as a function of enteral lipid dose across species. Lymph flow rate, TG and drug transport increased with lipid administration in all species tested, and scaled allometrically according to the equation A = aM E where A is the lymph transport parameter, M is animal body mass, a is constant and E is the allometric exponent. For lymph flow rate and TG transport, the allometric exponents were 0.84-0.94 and 0.80-0.96, respectively. Accordingly, weight normalized lymph flow and TG mass transport were generally lower in larger compared to smaller species. In comparison, mass transport of drug via lymph increased in a greater than proportional manner with species body mass with an exponent of ∼1.3. The supra-proportional increase in lymphatic drug transport with species body mass appeared to be due to increased partitioning of drug into lymph rather than blood following absorption. Overall, this study proposes that intestinal lymphatic flow, and lymphatic lipid and drug transport in humans is most similar to species with higher body mass such as dogs and underestimated by studies in rodents. Notably, lymph flow and lipid transport in humans can be predicted from animal data via allometric scaling suggesting the potential for similar relationships with drug transport.

15.
J Med Chem ; 63(9): 4929-4956, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32248693

RESUMO

Malaria puts at risk nearly half the world's population and causes high mortality in sub-Saharan Africa, while drug resistance threatens current therapies. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated target for malaria treatment based on our finding that triazolopyrimidine DSM265 (1) showed efficacy in clinical studies. Herein, we describe optimization of a pyrrole-based series identified using a target-based DHODH screen. Compounds with nanomolar potency versus Plasmodium DHODH and Plasmodium parasites were identified with good pharmacological properties. X-ray studies showed that the pyrroles bind an alternative enzyme conformation from 1 leading to improved species selectivity versus mammalian enzymes and equivalent activity on Plasmodium falciparum and Plasmodium vivax DHODH. The best lead DSM502 (37) showed in vivo efficacy at similar levels of blood exposure to 1, although metabolic stability was reduced. Overall, the pyrrole-based DHODH inhibitors provide an attractive alternative scaffold for the development of new antimalarial compounds.


Assuntos
Antimaláricos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pirróis/uso terapêutico , Animais , Antimaláricos/síntese química , Antimaláricos/metabolismo , Antimaláricos/farmacocinética , Linhagem Celular Tumoral , Cristalografia por Raios X , Di-Hidro-Orotato Desidrogenase , Cães , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Feminino , Humanos , Masculino , Camundongos SCID , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/enzimologia , Ligação Proteica , Pirróis/síntese química , Pirróis/metabolismo , Pirróis/farmacocinética , Ratos , Relação Estrutura-Atividade
16.
J Med Chem ; 63(9): 4655-4684, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32118427

RESUMO

A high-throughput screen designed to discover new inhibitors of histone acetyltransferase KAT6A uncovered CTX-0124143 (1), a unique aryl acylsulfonohydrazide with an IC50 of 1.0 µM. Using this acylsulfonohydrazide as a template, we herein disclose the results of our extensive structure-activity relationship investigations, which resulted in the discovery of advanced compounds such as 55 and 80. These two compounds represent significant improvements on our recently reported prototypical lead WM-8014 (3) as they are not only equivalently potent as inhibitors of KAT6A but are less lipophilic and significantly more stable to microsomal degradation. Furthermore, during this process, we discovered a distinct structural subclass that contains key 2-fluorobenzenesulfonyl and phenylpyridine motifs, culminating in the discovery of WM-1119 (4). This compound is a highly potent KAT6A inhibitor (IC50 = 6.3 nM; KD = 0.002 µM), competes with Ac-CoA by binding to the Ac-CoA binding site, and has an oral bioavailability of 56% in rats.


Assuntos
Antineoplásicos/farmacologia , Histona Acetiltransferases/antagonistas & inibidores , Hidrazinas/farmacologia , Sulfonamidas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Descoberta de Drogas , Estabilidade de Medicamentos , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Hidrazinas/farmacocinética , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/metabolismo , Sulfonamidas/farmacocinética
17.
J Med Chem ; 62(15): 7146-7159, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31256587

RESUMO

A high-throughput screen for inhibitors of the histone acetyltransferase, KAT6A, led to identification of an aryl sulfonohydrazide derivative (CTX-0124143) that inhibited KAT6A with an IC50 of 1.0 µM. Elaboration of the structure-activity relationship and medicinal chemistry optimization led to the discovery of WM-8014 (97), a highly potent inhibitor of KAT6A (IC50 = 0.008 µM). WM-8014 competes with acetyl-CoA (Ac-CoA), and X-ray crystallographic analysis demonstrated binding to the Ac-CoA binding site. Through inhibition of KAT6A activity, WM-8014 induces cellular senescence and represents a unique pharmacological tool.


Assuntos
Benzenossulfonatos/química , Descoberta de Drogas/métodos , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Hidrazinas/química , Animais , Benzenossulfonatos/farmacologia , Células CACO-2 , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Hidrazinas/farmacologia , Camundongos , Estrutura Secundária de Proteína
18.
J Pharm Sci ; 97(1): 209-24, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17585392

RESUMO

The purpose of the present study was to explore the applicability of the reciprocal permeability approach to correct for changes in thermodynamic activity when in vitro permeability data are generated in the presence of plasma proteins. Diazepam (DIA), digoxin (DIG), and propranolol (PRO) permeability was assessed in the presence of bovine serum albumin (BSA) and bovine alpha-1-acid glycoprotein (AAG). The reciprocal permeability approach was subsequently employed to calculate the true permeability coefficient (Papp(corr)) and the operational protein association constant (nK(a)). For BSA binding, good agreement was observed between the Papp(corr) values and Papp values obtained in the absence of protein. For PRO and AAG, where binding affinity was high, deviation in the reciprocal permeability plots was evident suggesting ligand depletion at low drug/high protein concentrations. Bidirectional DIG permeability data in the presence of either BSA or AAG indicated that neither protein had an effect on the efflux transporters involved in DIG permeability. The data suggest that plasma proteins can be utilized in permeability experiments with no adverse effects on transporter function and that the reciprocal permeability approach can be used to correct permeability data for changes in unbound drug concentration.


Assuntos
Proteínas Sanguíneas/química , Preparações Farmacêuticas/química , Albuminas/química , Algoritmos , Animais , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Diazepam/química , Digoxina/química , Excipientes , Técnicas In Vitro , Masculino , Orosomucoide/química , Permeabilidade , Propranolol/química , Ratos , Ratos Sprague-Dawley , Solubilidade , Tensoativos , Termodinâmica
19.
J Pharm Pharmacol ; 60(10): 1311-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18812024

RESUMO

The roles of the unstirred water layer (UWL) and receptor sink on the in-vitro transmembrane permeability of an increasingly lipophilic series of compounds (mannitol (MAN), diazepam (DIA) and cinnarizine (CIN)) have been assessed. Altered carbogen bubbling rates were used as a means to change the UWL thickness and polysorbate-80 (PS-80), bovine serum albumin (BSA) and alpha-1-acid glycoprotein (AAG) were employed to alter sink conditions. After correction for solubilisation, Papp data for MAN, DIA and CIN were consistent across varying donor PS-80 concentrations suggesting that for the drugs examined here, the donor UWL did not limit in-vitro permeability. Similarly, altered bubbling rates and receptor sink conditions had no impact on the permeability of MAN. In contrast, decreasing the size of the receptor UWL or adding solubilising agents to the receptor sink resulted in modest enhancements to the permeability of the more lipophilic probe DIA. For the most lipophilic compound, CIN, very significant changes to measured permeability (>30 fold) were possible, but were most evident only after concomitant changes to both the UWL and sink conditions, suggesting that the effectiveness of enhanced sink conditions were dependent on a decrease in the width of the UWL.


Assuntos
Absorção Intestinal , Jejuno/metabolismo , Água/química , Algoritmos , Animais , Apigenina/química , Radioisótopos de Carbono , Cinarizina/química , Cinarizina/metabolismo , Cinarizina/farmacocinética , Diazepam/química , Diazepam/metabolismo , Diazepam/farmacocinética , Glicosídeos/química , Interações Hidrofóbicas e Hidrofílicas , Masculino , Modelos Biológicos , Polissorbatos/química , Ratos , Ratos Sprague-Dawley , Soroalbumina Bovina/química , Solubilidade , Tecnologia Farmacêutica/métodos , Trítio
20.
J Pharm Pharmacol ; 60(2): 171-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18237464

RESUMO

The plasma pharmacokinetics and brain uptake of the novel neuroprotective agent AM-36 (1-(2-(4-chlorophenyl)-2-hydroxy)ethyl-4-(3,5-bis-(1,1dimethylethyl)-4-hydroxyphenyl) methylpiperazine) were assessed over 72 h following i.v. administration to male Sprague-Dawley rats. At nominal i.v. doses of 0.2, 1 and 3mg kg(-1), AM-36 exhibited an extremely large volume of distribution (18.2-24.6 L kg(-1)) and a long terminal elimination half-life, ranging from 25.2 to 37.7 h. Over this dose range, AM-36 exhibited linear pharmacokinetics, with no apparent change in clearance, volume of distribution or dose-normalised area under the plasma concentration - time curve. AM-36 was very highly bound to plasma proteins (> 99.6%); however, this did not appear to affect the ability of AM-36 to permeate the blood-brain barrier. Following a single i.v. dose of AM-36 at 3mg kg(-1) to rats, brain concentrations were detected for up to 72 h, and the brain-to-plasma ratios were high at all time points (ranging from 8.2 at 5 min post-dose to 0.9 at 72 h post-dose). The very high brain uptake of AM-36 supports previous in-vivo efficacy studies demonstrating the neuroprotective effects of this compound when administered to rats with middle cerebral artery occlusion.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Fármacos Neuroprotetores/farmacocinética , Piperazinas/farmacocinética , Animais , Área Sob a Curva , Relação Dose-Resposta a Droga , Meia-Vida , Injeções Intravenosas , Masculino , Fármacos Neuroprotetores/administração & dosagem , Piperazinas/administração & dosagem , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA