Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 15(25): 10376-84, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23680815

RESUMO

We report the influence of zinc oxide (ZnO) seed layers on the performance of ZnO-based memristive devices fabricated using an electrodeposition approach. The memristive element is based on a sandwich structure using Ag and Pt electrodes. The ZnO seed layer is employed to tune the morphology of the electrodeposited ZnO films in order to increase the grain boundary density as well as construct highly ordered arrangements of grain boundaries. Additionally, the seed layer also assists in optimizing the concentration of oxygen vacancies in the films. The fabricated devices exhibit memristive switching behaviour with symmetrical and asymmetrical hysteresis loops in the absence and presence of ZnO seed layers, respectively. A modest concentration of oxygen vacancy in electrodeposited ZnO films as well as an increase in the ordered arrangement of grain boundaries leads to higher switching ratios in Ag/ZnO/Pt devices.

2.
Nanoscale Res Lett ; 9(1): 401, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25221453

RESUMO

The morphology and electrical properties of orthorhombic ß-WO3 nanoflakes with thickness of ~7 to 9 nm were investigated at the nanoscale with a combination of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNA™), Fourier transform infra-red absorption spectroscopy (FTIR), linear sweep voltammetry (LSV) and Raman spectroscopy techniques. CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nanoflakes synthesized via a two-step sol-gel-exfoliation method. It was determined that ß-WO3 nanoflakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro and nanostructured WO3 synthesized at alternative temperatures.

3.
Nanoscale ; 6(24): 15029-36, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25367432

RESUMO

Quasi two-dimensional (Q2D) semiconducting metal oxides with enhanced charge carrier mobility hold tremendous promise for nano-electronics, photonics, catalysis, nano-sensors and electrochromic applications. In addition to graphene and metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te), 2D sub-stoichiometric WO(3-x) is gaining importance as a promising semiconductor material for field-effect-transistor (FET) based devices. A combination of high permittivity, suppression of the Coulomb effects, and their stratified structure enhances the carrier mobility in such a material. Additionally, the sub-stoichiometry of this semiconductor oxide allows the reduction of the bandgap and increase of the free charge carriers at the same time. Here, we report for the first time H(+) intercalated WO(3) FETs, made of Q2D nano-flakes, with enhanced charge-carrier mobility exceeding 319 cm(2) V(-1) s(-1) comparable with the charge-carrier mobility of Q2D dichalcogenides MoS(2) and WSe(2). Analyses indicate that the enhanced electrical properties of the sub-stoichiometric WO(3-x) depend on the oxygen vacancies in the intercalated nano-flakes. These findings confirmed that Q2D sub-stoichiometric WO(3-x) is a promising material for various functional FET devices.

4.
Nanoscale ; 4(2): 461-6, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22064926

RESUMO

Two dimensional molybdenum disulfide (MoS(2)) has recently become of interest to semiconductor and optic industries. However, the current methods for its synthesis require harsh environments that are not compatible with standard fabrication processes. We report on a facile synthesis method of layered MoS(2) using a thermal evaporation technique, which requires modest conditions. In this process, a mixture of MoS(2) and molybdenum dioxide (MoO(2)) is produced by evaporating sulfur powder and molybdenum trioxide (MoO(3)) nano-particles simultaneously. Further annealing in a sulfur-rich environment transforms majority of the excess MoO(2) into layered MoS(2). The deposited MoS(2) is then mechanically exfoliated into minimum resolvable atomically thin layers, which are characterized using micro-Raman spectroscopy and atomic force microscopy. Furthermore Raman spectroscopy is employed to determine the effect of electrochemical lithium ion exposure on atomically thin layers of MoS(2).


Assuntos
Cristalização/métodos , Dissulfetos/síntese química , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Gases/química , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Molibdênio , Tamanho da Partícula , Propriedades de Superfície
5.
Talanta ; 82(2): 502-7, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20602927

RESUMO

A Cu(2)O-doped RuO(2) sensing electrode (SE) for potentiometric detection of dissolved oxygen (DO) was prepared and its structure and electrochemical properties were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron microscopy (XPS) and energy-dispersive spectroscopy (EDS) techniques. Cu(2)O-RuO(2)-SE displayed a linear DO response from 0.5 to 8.0 ppm (log[O(2)], -4.73 to -3.59) within a temperature range of 9-30 degrees C. The maximum sensitivity of -47.4 mV/decade at 7.27 pH was achieved at 10 mol% Cu(2)O. Experimental evaluation of the Cu(2)O-doped RuO(2)-SE demonstrated that the doping of RuO(2) not only improves its structure but also enhances both sensor's selectivity and antifouling properties. Selectivity measurements revealed that 10 mol% Cu(2)O-doped RuO(2)-SE is insensitive to the presence of Na(+), Mg(2+), K(+), Ca(2+), NO(3)(-), PO(4)(2-) and SO(4)(2-) ions in the solution in the concentration range of 10(-7)-10(-1) mol/l.


Assuntos
Cobre/química , Eletrodos , Compostos de Rutênio/química , Eletrodos/tendências , Limite de Detecção , Microscopia Eletrônica de Varredura , Potenciometria/métodos , Potenciometria/normas , Soluções/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA