Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 38(17): 4127-4134, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35792837

RESUMO

MOTIVATION: Inferring gene regulatory networks in non-independent genetically related panels is a methodological challenge. This hampers evolutionary and biological studies using heterozygote individuals such as in wild sunflower populations or cultivated hybrids. RESULTS: First, we simulated 100 datasets of gene expressions and polymorphisms, displaying the same gene expression distributions, heterozygosities and heritabilities as in our dataset including 173 genes and 353 genotypes measured in sunflower hybrids. Secondly, we performed a meta-analysis based on six inference methods [least absolute shrinkage and selection operator (Lasso), Random Forests, Bayesian Networks, Markov Random Fields, Ordinary Least Square and fast inference of networks from directed regulation (Findr)] and selected the minimal density networks for better accuracy with 64 edges connecting 79 genes and 0.35 area under precision and recall (AUPR) score on average. We identified that triangles and mutual edges are prone to errors in the inferred networks. Applied on classical datasets without heterozygotes, our strategy produced a 0.65 AUPR score for one dataset of the DREAM5 Systems Genetics Challenge. Finally, we applied our method to an experimental dataset from sunflower hybrids. We successfully inferred a network composed of 105 genes connected by 106 putative regulations with a major connected component. AVAILABILITY AND IMPLEMENTATION: Our inference methodology dedicated to genomic and transcriptomic data is available at https://forgemia.inra.fr/sunrise/inference_methods. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes Reguladoras de Genes , Transcriptoma , Humanos , Heterozigoto , Teorema de Bayes , Genômica , Algoritmos
2.
Bioinformatics ; 29(17): 2129-36, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23842814

RESUMO

MOTIVATION: The main challenge for structure-based computational protein design (CPD) remains the combinatorial nature of the search space. Even in its simplest fixed-backbone formulation, CPD encompasses a computationally difficult NP-hard problem that prevents the exact exploration of complex systems defining large sequence-conformation spaces. RESULTS: We present here a CPD framework, based on cost function network (CFN) solving, a recent exact combinatorial optimization technique, to efficiently handle highly complex combinatorial spaces encountered in various protein design problems. We show that the CFN-based approach is able to solve optimality a variety of complex designs that could often not be solved using a usual CPD-dedicated tool or state-of-the-art exact operations research tools. Beyond the identification of the optimal solution, the global minimum-energy conformation, the CFN-based method is also able to quickly enumerate large ensembles of suboptimal solutions of interest to rationally build experimental enzyme mutant libraries. AVAILABILITY: The combined pipeline used to generate energetic models (based on a patched version of the open source solver Osprey 2.0), the conversion to CFN models (based on Perl scripts) and CFN solving (based on the open source solver toulbar2) are all available at http://genoweb.toulouse.inra.fr/~tschiex/CPD


Assuntos
Conformação Proteica , Engenharia de Proteínas/métodos , Algoritmos , Modelos Moleculares , Proteínas/química , Análise de Sequência de Proteína , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA