Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Environ Manage ; 367: 121951, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39079496

RESUMO

This comprehensive review critically assesses traditional and emerging technologies for domestic wastewater treatment and reuse, focusing on the transition from conventional centralised systems to innovative decentralised approaches. Through an extensive literature search on domestic wastewater systems serving a population equivalent of less than or equal to 10, the study juxtaposes linear and circular methods and highlights their impact on urban water management and the environment. The papers reviewed were classified into five categories: Environmental studies, economic studies, social studies, technological studies, and reviews and policy papers. The analysis was carried out separately for linear and circular approaches within each category. In addition, the maturity of the technology (lab/pilot or full-scale application) was taken into account in the analysis. The research landscape is shown to be evolving towards circular methods that promise sustainability through resource recovery, despite the dominance of linear perspectives. The lack of clear progress in decentralised technologies, the scarcity of circularity assessments and the challenges of urban integration are highlighted. Operational reliability, regulatory compliance and policy support are identified as key barriers to the adoption of decentralised systems. While conventional pollutants and their environmental impacts are well addressed for linear systems, the study of emerging pollutants is in its infancy. Conclusions on the impact of these hazardous pollutants are tentative and cautious. Social and economic studies are mainly based on virtual scenarios, which are useful research tools for achieving sustainability goals. The conceptual frameworks for assessing the social dimension need further refinement to be effective. The paper argues for a balanced integration of centralisation and decentralisation, proposing a dual strategy that emphasizes the development of interoperable technologies. It calls for further research, policy development and widespread implementation to promote decentralised solutions in urban water management and pave the way for sustainable urban ecosystems.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
2.
J Environ Manage ; 354: 120385, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382435

RESUMO

This paper uses an expert-based methodology to survey the barriers and strategies related to the implementation of nature-based solutions (NBS). The ambition of the paper is to offer a bird's eye overview of the difficulties encountered by NBS deployment and ways to overcome them. With a wide participation of 80 experts from COST Action Circular City, we identify barriers specific to 35 pre-defined NBS of the following four categories: Vertical Greening Systems and Green Roofs; Food and Biomass Production; Rainwater Management; and Remediation, Treatment, and Recovery. The research sheds light on how a major interdisciplinary - yet predominantly technically-oriented - community of scientists and practitioners views this important topic. Overall, the most relevant barriers are related to technological complexity, lack of skilled staff and training programs and the lack of awareness that NBS is an option. Our results highlight concerns related to post implementation issues, especially operation and maintenance, which subsequently affect social acceptance. The paper identifies a "chain" effect across barriers, meaning that one barrier can affect the existence or the relevance of other barriers. In terms of strategies, most of them target governance, information, and education aspects, despite the predominantly technical expertise of the participants. The study innovates with respect to state-of-the-art research by showing a fine-grained connection between barriers, strategies and individual NBS and categories, a level of detail which is not encountered in any other study to date.


Assuntos
Cidades , Natureza
3.
J Environ Manage ; 203(Pt 2): 732-740, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011015

RESUMO

This study assesses from an environmental perspective two different configurations for the combined treatment of wastewater and domestic organic waste (DOW) in a small and decentralised community having a population of 2000. The applied schemes consist of an upflow anaerobic blanket (UASB) as core treatment process. Scheme A integrates membranes with the anaerobic treatment; while in Scheme B biological removal of nutrients in a sequencing batch reactor (SBR) is applied as a post treatment to UASB effluent. In energy-related categories, the main contributor is electricity consumption (producing 18-50% of the impacts); whereas in terms of eutrophication-related categories, the discharge of the treated effluent arises as a major hotspot (with 57-99% of the impacts). Scheme B consumes 25% more electricity and produces 40% extra sludge than Scheme A, resulting in worse environmental results for those energy categories. However, the environmental impact due to the discharge of the treated effluent is 75% lower in eutrophication categories due to the removal of nutrients. In addition, the quality of the final effluent in Scheme B would allow its use for irrigation (9.6 mg N/L and 2 mg P/L) if proper tertiary treatment and disinfection are provided, expanding its potential adoption at a wider scale. Direct emissions due to the dissolved methane in the UASB effluent have a significant environmental impact in climate change (23-26%). Additionally, the study shows the environmental feasibility of the use of food waste disposers for DOW collection in different integration rates.


Assuntos
Mudança Climática , Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Esgotos
4.
Environ Sci Technol ; 49(18): 10877-85, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26270064

RESUMO

Polyhydroxyalkanoates (PHAs) from activated sludge and renewable organic material can become an alternative product to traditional plastics since they are biodegradable and are produced from renewable sources. In this work, the selection of PHA storing bacteria was integrated with the side stream treatment of nitrogen removal via nitrite from sewage sludge reject water. A novel process was developed and applied where the alternation of aerobic-feast and anoxic-famine conditions accomplished the selection of PHA storing biomass and nitrogen removal via nitrite. Two configurations were examined: in configuration 1 the ammonium conversion to nitrite occurred in the same reactor in which the PHA selection process occurred, while in configuration 2 two separate reactors were used. The results showed that the selection of PHA storing biomass was successful in both configurations, while the nitrogen removal efficiency was much higher (almost 90%) in configuration 2. The PHA selection degree was evaluated by the volatile fatty acid (VFA) uptake rate (-qVFAs) and the PHA production rate (qPHA), which were 239 ± 74 and 89 ± 7 mg of COD per gram of active biomass (Xa) per hour, respectively. The characterization of the biopolymer recovered after the accumulation step, showed that it was composed of 3-hydroxybutyrate (3HB) (60%) and 3-hydroxyvalerate (3HV) (40%). The properties associated with the produced PHA suggest that they are suitable for thermoplastic processing.


Assuntos
Bactérias/metabolismo , Biotecnologia/métodos , Poli-Hidroxialcanoatos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Bactérias/crescimento & desenvolvimento , Biomassa , Biopolímeros , Reatores Biológicos/microbiologia , Biotecnologia/instrumentação , Ácidos Graxos Voláteis , Nitritos/metabolismo , Nitrogênio/análise , Nitrogênio/isolamento & purificação , Ácidos Pentanoicos , Poli-Hidroxialcanoatos/química , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/instrumentação
5.
Water Sci Technol ; 69(9): 1853-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24804659

RESUMO

This work evaluated the use of different external carbon sources to promote the via-nitrite nutrient removal from anaerobic effluents. The carbon sources consisted of fermentation liquid produced from the organic fraction of municipal solid waste (OFMSW FL), drainage liquid produced from OFMSW, fermentation liquid produced from vegetable and fruit waste (VFW FL) and acetic acid. Denitritation and phosphorus uptake via nitrite were evaluated in two sequencing batch reactors, one treating the anaerobic supernatant produced from the co-digestion of OFMSW and activated sludge (highly nitrogenous anaerobic effluent - HNAE), and the other one treating the weakly nitrogenous anaerobic effluent (WNAE) from an upflow anaerobic sludge blanket reactor. The use of OFMSW FL to treat HNAE resulted in high nitrite (27 mgN/(gVSS·h) (VSS - volatile suspended solids) and phosphate uptake (15 mgP/gVSS·h). In the WNAE, nutrient kinetics were much slower. The use of acetic acid and VFW FL performed poorly, while the use of OFMSW FL, which was rich in butyric acid and propionic acid, resulted in significant nutrient removal (7 mgN/gVSS·h and 6 mgP/gVSS·h). The economic evaluation showed that the use of OFMSW FL is a less expensive option than the acetic acid use.


Assuntos
Reatores Biológicos , Carbono/química , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Bactérias/metabolismo , Biomassa , Carbono/economia , Eliminação de Resíduos Líquidos/economia
6.
Artigo em Inglês | MEDLINE | ID: mdl-22870996

RESUMO

This study examined the inhibitory effects of lead, copper, nickel and zinc on heterotrophic biomass and their potential mitigation through the use of low-cost, natural minerals. Activated sludge was placed in batch reactors and specific heavy metal concentrations were added. Subsequently, the biomass specific oxygen uptake rate (sOUR) was determined to assess the level of biomass inhibition. Biomass inhibition by heavy metals followed the order Cu(2+)>Pb(2+)>Zn(2+)>Ni(2+), with copper being the most toxic metal, causing high inhibition of heterotrophic biomass even at relatively low concentrations (i.e. 10 mg·L(-1)). Zn had very small toxic effect at 10 mg·L(-1), while at 40 mg·L(-1) the level of biomass inhibition reached 80%. Nickel stimulated activated sludge activity at concentrations of the order of 10 mg·L(-1). The addition of 10 g·L(-1) bentonite and zeolite in activated sludge resulted in the decrease of the inhibitory effect of heavy metals on biomass respiratory activity. In some cases, mineral addition was very favorable as inhibition was reduced from 69-90% to less than 55% and even up to 12%. The beneficial action of minerals is attributed both to the adsorption of heavy metals on the mineral and on the potential aggregation between mineral and sludge particles.


Assuntos
Biomassa , Metais Pesados/toxicidade , Minerais/metabolismo , Cobre/toxicidade , Níquel/toxicidade , Esgotos/microbiologia , Zinco/toxicidade
7.
Environ Technol ; : 1-14, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35794016

RESUMO

One of the most recent innovations to promote a circular economy during wastewater treatment is the production of biopolymers. It has recently been demonstrated that it is possible to integrate the production of biopolymers in the form of polyhydroxyalkanoates (PHA) with nitrogen removal via nitrite during the treatment of sludge reject water. In the present study, simulation of a new process for bioresource recovery was conducted by an appropriate modification of the Activated Sludge Model 3. The process consists of the integrated nitrogen removal via nitrite from sludge reject water and the selection of PHA-storing biomass by inducing a feast and famine regime under aerobic and anoxic conditions. According to the results, it is anticipated that simulation data matched very satisfactorily with the experimental data and confirmed the main experimental observation, showing that during the famine period the PHA depletion was almost complete due to the availability of nitrite as the electron acceptor. Simulation results indicate that the selection of the volumetric organic loading rate and of the relative duration of the aerobic feast/anoxic famine duration is critical in order to allow for the effective denitritation of the internally stored PHA during the famine phase.

8.
Sci Total Environ ; 822: 153602, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35121039

RESUMO

The transition from a linear make-use-dispose model to a Circular Economy (CE) model has gained momentum in recent years. To date, substantive efforts have been put by researchers and practitioners on environmental assessment of circular water systems (CWS). Yet, the economic aspect of CWS has not received the same attention. This research is an attempt to bridge this gap by evaluating the economic viability of a decentralised hybrid rainwater- wastewater-greywater (HRWG) system. For this purpose, a framework of Shadow Pricing- Life Cycle Cost-Benefit (SLCCB) to analyse a CWS is proposed. Shadow pricing could compliment the established Life Cycle Costing (LCC) methods. The main parameters (costs and benefits) of the proposed SLCCB framework are divided into two types: Internal and External. The Internal pricing covers the capital expenditure (CAPEX) and operational expenditure (OPEX), while the External pricing covers the environmental and social costs-benefits of implementing CWS. The proposed SLCCB added to the classical Net Present Value (NPV) and Payback Period (PP) calculations could provide a more realistic evaluation of the economic performance of CWS. To demonstrate the efficacy of the new CE model, a new CWS in Greece was studied. A sensitivity analysis was conducted to assess the impact of the reclaimed water tariffs, internal costs, life span of the project, and the annual discount rate on the SLCCB. The results of the study reveal that the SLCCB of CWS is highly sensitive to these parameters. The economic feasibility of CWS boost with increasing discount rate and reclaimed water tariffs, as well as with decreasing project's life span and internal costs. The conclusion of this research demonstrates that investment in CWS is economically viable if External parameters are taken into consideration.


Assuntos
Águas Residuárias , Água , Análise Custo-Benefício , Grécia , Modelos Econômicos
9.
Water Environ Res ; 83(4): 298-312, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21553586

RESUMO

This work investigated the use of ultrafiltration (UF) or microfiltration (MF) membranes combined with natural minerals for the pre-treatment of wastewater containing high amounts of lead. The effects of initial lead concentration, solution pH, membrane pore size, mineral type and concentration and mineral - metal contact time were investigated. Lead removal accomplished by the UF system was higher in wastewater compared to that obtained in aqueous solutions and this was attributed to the formation of insoluble metal precipitates/complexes, which were effectively retained by the membranes. At pH = 6 the dominant removal mechanism was precipitation/complexation, while mineral adsorption enhanced lead removal. The combined use of minerals and UF/MF membranes can effectively remove lead from wastewater resulting in a final effluent that can be further treated biologically with no biomass inhibition problems or can be safely discharged into municipal sewers. Kinetics investigation revealed a two-stage diffusion process for all minerals employed. The Langmuir isotherm exhibited the best fit to the experimental data.


Assuntos
Resíduos Industriais , Chumbo/química , Membranas Artificiais , Ultrafiltração/métodos , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos
10.
Sci Total Environ ; 792: 148267, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34147786

RESUMO

The transition from the current linear model of abstraction, use and discharge of water into recycle-reuse under the circular economy (CE) principles is momentous. An analysis of recent literature about the economic impact of linear to circular (L2C) transition is made. The review investigates the economic implications (i.e. cost-benefit) of deployment of enabling technologies, tools and methodologies within the circular water systems. The study is enhanced by presenting the results of our investigation into the policy impact (push-barriers) of L2C transition. As the vehicle for the L2C transition, nature-based solutions (NBS) and its economic and policy implications is discussed. A framework is proposed for the monetary assessment of the costs of investment in NBS technologies, infrastructure and education against the environmental and socio-economic benefits within the policy frameworks. This framework may build the early foundation for bridging the gap that exists for a systematic and objective economic impact (cost-benefit) analysis of L2C transition in the Water sector. This framework will lead to a generic multi-parametric cost model of NBS for Circularity Water Systems.


Assuntos
Reciclagem , Água , Análise Custo-Benefício , Políticas
11.
Int J Biol Macromol ; 179: 550-556, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33675832

RESUMO

This paper investigates the interface bonding of the novel carboxymethyl cellulose (CMC)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biocomposites, and the influence of coupling agents on the structure and properties of the biocomposites. The chemical structure, crystallisation behaviour and microstructure of the untreated and coupling agent treated biocomposites were examined by using FTIR, XRD and SEM respectively. The results suggested that maleic anhydride (MA) and vinyltrimethoxysilane (VTMS) covalently bonded to both CMC and PHBV macromolecules owing to their intrinsic multifunctionality, and promoted the distribution and embedment of the CMC in PHBV matrix, leading to a superior interfacial bonding of the resulted biocomposites. The enhanced interfacial bonding between the CMC and PHBV gave rise to a significant increase of tensile and flexural properties (i.e. tensile and flexural stress increased by up to 71% and 117% respectively, Young's and flexural modulus increased by up to 17% and 18% respectively) as well as thermal stability of the biocomposites.


Assuntos
Materiais Biocompatíveis/química , Carboximetilcelulose Sódica/química , Teste de Materiais , Poliésteres/química
12.
Sci Total Environ ; 751: 141755, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32889470

RESUMO

An issue of significant importance worldwide is the contamination of water with antibiotics giving rise to antibiotic resistance in the environment. Antibiotics such as tetracycline are widely used in agriculture, as such they can pollute water courses, providing a means by which environmental bacteria can evolve antibiotic resistance genes. Biochar can form part of a solution as it is a well-known adsorbent. This material can be efficient in the adsorption of a wide range of pollutants and is inexpensive. An innovative heat pipe reactor was used to produce biochar from excess food and garden materials. This biochar was characterised using scanning electron microscopy with energy dispersive X-ray analyser (SEM-EDAX), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. The biochar produced had an adsorption capacity between 2.98 mg/g and 8.23 mg/g for initial tetracycline concentrations of 20 mg/l and 100 mg/l, respectively. The Freundlich isotherm provided the best fit to the experimental data. Kinetics examination revealed a rapid adsorption of tetracycline during the initial stages. The Elovich equation fitted the experimental data well. This adsorbent could therefore be produced at the site of an agricultural enterprise through the pyrolysis of agriculture waste and then used to reduce the infiltration of antibiotics into the environment.


Assuntos
Poluentes Químicos da Água , Água , Adsorção , Agricultura , Antibacterianos , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Tetraciclina
13.
Membranes (Basel) ; 11(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34940468

RESUMO

Currently, there is growing scientific interest in the development of more economic, efficient and environmentally friendly municipal wastewater treatment technologies. Laboratory and pilot-scale surveys have revealed that the anaerobic membrane bioreactor (AnMBR) is a promising alternative for municipal wastewater treatment. Anaerobic membrane bioreactor technology combines the advantages of anaerobic processes and membrane technology. Membranes retain colloidal and suspended solids and provide complete solid-liquid separation. The slow-growing anaerobic microorganisms in the bioreactor degrade the soluble organic matter, producing biogas. The low amount of produced sludge and the production of biogas makes AnMBRs favorable over conventional biological treatment technologies. However, the AnMBR is not yet fully mature and challenging issues remain. This work focuses on fundamental aspects of AnMBRs in the treatment of municipal wastewater. The important parameters for AnMBR operation, such as pH, temperature, alkalinity, volatile fatty acids, organic loading rate, hydraulic retention time and solids retention time, are discussed. Moreover, through a comprehensive literature survey of recent applications from 2009 to 2021, the current state of AnMBR technology is assessed and its limitations are highlighted. Finally, the need for further laboratory, pilot- and full-scale research is addressed.

14.
Chemosphere ; 262: 128415, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182128

RESUMO

The occurrence, fate and removal of microplastics (MPs) in a wastewater treatment plant (WWTP) in Central Italy were investigated together with their potential adverse effects on anaerobic processes. In the influent of the WWTP, 3.6 MPs.L-1 were detected that mostly comprised polyester fibers and particles in the shape of films, ranging 0.1-0.5 mm and made of polyethylene and polypropylene (PP). The full-scale conventional activated sludge scheme removed 86% of MPs, with the main reduction in the primary and secondary settling. MPs particles bigger than 1 mm were not detected in the final effluent and some loss of polymers types were observed. In comparison, the pilot-scale upflow granular anaerobic sludge blanket (UASB) + anaerobic membrane bioreactor (AnMBR) configuration achieved 94% MPs removal with the abatement of 87% of fibers and 100% of particles. The results highlighted an accumulation phenomenon of MPs in the sludge and suggested the need to further investigate the effects of MPs on anaerobic processes. Accordingly, PP-MPs at concentrations from 5 PP-MPs.gTS-1 to 50 PP-MPs.gTS-1 were spiked in the pilot-scale UASB reactor that was fed with real municipal wastewater, where up to 58% decrease in methanogenic activity was observed at the exposure of 50 PP-MPs.gTS-1. To the best of our knowledge, the presented results are the first to report of PP-MPs inhibition on anaerobic processes.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Reatores Biológicos , Itália , Microplásticos , Plásticos , Polietileno , Esgotos , Águas Residuárias
15.
Waste Manag ; 99: 42-48, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31472439

RESUMO

This paper presents a novel development of sludge cellulose plastic composite (SPC) in line with the circular economy concept by using recovered sludge cellulose from wastewater treatment plant (WWTP). Bearing the aim of replacing the wood in wood plastic composite (WPC) with sludge cellulose, WPC was developed in parallel for determining the substitution potentials. In order to maximise the integration of properties, maleic anhydride (MA) and vinyltrimethoxysilane (VTMS) coupling agents were employed to refine the interfacial bonding of both SPC and WPC. In line with the main aim of circular economy - to decouple the economic value from the environmental impact, eco-efficiency analysis was performed for the developed process. The results showed that the tensile and flexural strength of the composites were substantially enhanced after both treatments, while MA appeared to be more efficient than VTMS in the refinery of interfacial bonding. Scanning electron microscope (SEM) analysis confirmed the improvement of interface by identifying well embedded and firmly bonded wood flour or sludge cellulose in the matrix. WPC was marginally more thermally stable than SPC, while SPC suggested comparable flexural properties. Eco-efficiency assessment results showed that the SPC had better environmental and economic performance than the WPC. The latter turns sludge cellulose as a promising sustainable alternative to wood or natural fibres in the production of WPC.


Assuntos
Plásticos , Madeira , Celulose , Reciclagem , Esgotos
16.
Environ Technol ; 40(10): 1233-1238, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29307278

RESUMO

A modified anaerobic baffled reactor (ABR) combined with a submerged membrane bioreactor (MBR) was applied to treat municipal wastewater. The performance of this process was examined in terms of the removal of organic matter, suspended solids, turbidity and nitrogen. The raw wastewater was fed to the 105 L ABR and then the treated effluent was driven to a 58 L MBR equipped with a submerged hollow fibre ultrafiltration membrane module. The integrated modified ABR-MBR process resulted in the complete removal of total suspended solids (TSS) and in very high chemical oxygen demand (COD) removal (93.3 ± 3.8%). Furthermore, the recycling of mixed liquor from the MBR to the modified ABR resulted in some denitrification occurring in the first compartment of the ABR, resulting in 53 ± 6% removal of nitrogen by the integrated process. The membrane flux was stable and above 20 L/m2h. Membrane examination at the nanoscale indicated the deposition of small particles on the surface of the membranes.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Membranas Artificiais , Taiwan
17.
Sci Total Environ ; 639: 1268-1282, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29929294

RESUMO

Significant growth of the human population is expected in the future. Hence, the pressure on the already scarce natural water resources is continuously increasing. This work is an overview of membrane and filtration methods for the removal of pollutants such as bacteria, viruses and heavy metals from surface water. Microfiltration/Ultrafiltration (MF/UF) can be highly effective in eliminating bacteria and/or act as pre-treatment before Nanofiltration/Reverse Osmosis (NF/RO) to reduce the possibility of fouling. However, MF/UF membranes are produced through relatively intensive procedures. Moreover, they can be modified with chemical additives to improve their performance. Therefore, MF/UF applicability in less developed countries can be limited. NF shows high removal capability of certain contaminants (e.g. pharmaceutically active compounds and ionic compounds). RO is necessary for desalination purposes in areas where sea water is used for drinking/sanitation. Nevertheless, NF/RO systems require pre-treatment of the influent, increased electrical supply and high level of technical expertise. Thus, they are often a highly costly addition for countries under development. Slow Sand Filtration (SSF) is a simple and easy-to-operate process for the retention of solids, microorganisms and heavy metals; land use is a limiting factor, though. Rapid Sand Filtration (RSF) is an alternative responding to the need for optimized land use. However, it requires prior and post treatment stages to prevent fouling. Especially after coating with metal-based additives, sand filtration can constitute an efficient and sustainable treatment option for developing countries. Granular activated carbon (GAC) adsorbs organic compounds that were not filtered in previous treatment stages. It can be used in conjunction with other methods (e.g. MF and SSF) to face pollution that results from potentially outdated water network (especially in less developed areas) and, hence, produce water of acceptable drinking quality. Future research can focus on the potential of GAC production from alternative sources (e.g. municipal waste). Given the high production/operation/maintenance cost of the NF/RO systems, more cost-effective but equally effective alternatives can be implemented: e.g. (electro)coagulation/flocculation followed by MF/UF, SSF before/after MF/UF, MF/UF before GAC.

18.
Water Res ; 109: 173-185, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27883922

RESUMO

A technical and environmental evaluation of an innovative scheme for the co-treatment of domestic wastewater and domestic organic waste (DOW) was undertaken by coupling an upflow anaerobic sludge blanket (UASB), a sequencing batch reactor (SBR) and a fermentation reactor. Alternative treatment configurations were evaluated with different waste collection practices as well as various schemes for nitrogen and phosphorus removal. All treatment systems fulfilled the required quality of the treated effluent in terms of chemical oxygen demand (COD) and total suspended solids (TSS) concentrations. However, only the configurations performing the short-cut nitrification/denitrification with biological phosphorus removal met the specifications for water reuse. The environmental assessment included the analysis of impacts on climate change (CC), freshwater eutrophication (FE) and marine eutrophication (ME). A functional unit (FU) of 2000 people receiving treatment services was considered. The most relevant sources of environmental impacts were associated to the concentration of dissolved methane in the UASB effluent that is emitted to the atmosphere in the SBR process (accounting for 41% of impacts in CC), electricity consumption, mainly for aeration in the SBR (representing 14% of the impacts produced in CC), and the discharge of the treated effluent in receiving waters (contributing 98% and 57% of impacts in FE and ME, respectively). The scheme of separate waste collection together with biological nitrogen removal and phosphorus uptake via nitrite was identified as the best configuration, with good treated effluent quality and environmental impacts lower than those of the other examined configurations.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Reatores Biológicos , Mudança Climática , Nitrogênio , Esgotos
19.
Sci Total Environ ; 596-597: 106-123, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28426987

RESUMO

Nitrous oxide (N2O) is an important pollutant which is emitted during the biological nutrient removal (BNR) processes of wastewater treatment. Since it has a greenhouse effect which is 265 times higher than carbon dioxide, even relatively small amounts can result in a significant carbon footprint. Biological nitrogen (N) removal conventionally occurs with nitrification/denitrification, yet also through advanced processes such as nitritation/denitritation and completely autotrophic N-removal. The microbial pathways leading to the N2O emission include hydroxylamine oxidation and nitrifier denitrification, both activated by ammonia oxidizing bacteria, and heterotrophic denitrification. In this work, a critical review of the existing literature on N2O emissions during BNR is presented focusing on the most contributing parameters. Various factors increasing the N2O emissions either per se or combined are identified: low dissolved oxygen, high nitrite accumulation, low chemical oxygen demand to nitrogen ratio, slow growth of denitrifying bacteria, uncontrolled pH and temperature. However, there is no common pattern in reporting the N2O generation amongst the cited studies, a fact that complicates its evaluation. When simulating N2O emissions, all microbial pathways along with the potential contribution of abiotic N2O production during wastewater treatment at different dissolved oxygen/nitrite levels should be considered. The undeniable validation of the robustness of such models calls for reliable quantification techniques which simultaneously describe dissolved and gaseous N2O dynamics. Thus, the choice of the N-removal process, the optimal selection of operational parameters and the establishment of validated dynamic models combining multiple N2O pathways are essential for studying the emissions mitigation.

20.
Bioresour Technol ; 152: 477-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24333624

RESUMO

The inhibitory effect of two veterinary pharmaceuticals was studied for different types of biomass involved in via nitrite nitrogen removal processes. Batch tests were conducted to determine the inhibition level of acetaminophen (PAR) and doxycycline (DOX) on the activity of short-cut nitrifying, denitrifying and anoxic ammonium oxidation (anammox) biomass and phosphorus accumulating organisms (PAOs). All biomass types were affected by PAR and DOX, with anammox being the most sensitive bacteria. DOX inhibited more the biomass treating high strength nitrogenous effluents (HSNE) than low strength nitrogenous effluents (LSNE). The phosphorus uptake inhibition under anoxic conditions was lower than 25% in the presence of PAR up to 400 mg L(-1). The same DOX concentration inhibited anoxic phosphorus uptake more than 65% for biomass treating LSNE and HSNE. Heterotrophic denitrifying bacteria seem to be more robust at high DOX and PAR concentrations than anammox. Both veterinary products inactivated ammonium oxidizing, Accumulibacter phosphatis and denitrifying bacteria.


Assuntos
Biomassa , Nitritos/isolamento & purificação , Nitrogênio/isolamento & purificação , Drogas Veterinárias/farmacologia , Eliminação de Resíduos Líquidos/métodos , Acetaminofen/isolamento & purificação , Acetaminofen/farmacologia , Compostos de Amônio/metabolismo , Bactérias/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Doxiciclina/isolamento & purificação , Doxiciclina/farmacologia , Hibridização in Situ Fluorescente , Concentração Inibidora 50 , Nitritos/metabolismo , Nitrogênio/metabolismo , Oxigênio/metabolismo , Fósforo/metabolismo , Esgotos/microbiologia , Drogas Veterinárias/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA