Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(1): 598-604, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30582702

RESUMO

In the design of electron-transport layers (ETLs) to enhance the efficiency of planar perovskite solar cells (PSCs), facile electron extraction and transport are important features. Here, we consider the effects of different titanium oxide (TiO2) polymorphs, anatase and brookite. We design and fabricate high-phase-purity, single-crystalline, highly conductive, and low-temperature (<180 °C)-processed brookite-based TiO2 heterophase junctions on fluorine-doped tin oxide (FTO) as the substrate. We test and compare single-phase anatase (A) and brookite (B) and heterophase anatase-brookite (AB) and brookite-anatase (BA) as ETLs in PSCs. The power-conversion efficiencies (PCEs) of PSCs with low-temperature-processed single-layer FTO-B as the ETL were as high as 14.92%, which is the highest reported efficiency of FTO-B-based single-layer PSC. This implies that FTO-B serves as an active phase and can be a potential candidate as an n-type ETL scaffold in planar PSCs. Moreover, the surface of highly crystalline brookite TiO2 exhibits a tendency toward interparticle necking, leading to the formation of compact scaffolds. Furthermore, PSCs with heterophase junction FTO-AB ETLs exhibited PCEs as high as 16.82%, which is superior to those of PSCs with single-phase anatase (FTO-A) and brookite (FTO-B) as the ETLs (13.86% and 14.92%, respectively). In addition, the PSCs with FTO-AB exhibited improved efficiency and decreased hysteresis compared with those with FTO-BA (13.45%) due to the suitable band alignment with the perovskite layer, which resulted in superior photogenerated charge-carrier extraction and reduced charge accumulation at the interface between the heterophase junction and perovskite. Thus, the present work presents an effective strategy by which to develop heterophase junction ETLs and manipulate the interfacial energy band to further improve the performance of planar PSCs and enable the clean and eco-friendly fabrication of low-cost mass production.

2.
Inorg Chem ; 57(24): 15462-15473, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30507117

RESUMO

A polar LiNbO3 (LN)-type oxide LiSbO3 was synthesized by a high-temperature heat treatment under a pressure of 7.7 GPa and found to exhibit ferroelectricity. The crystal structural refinement using the data of synchrotron powder X-ray diffraction and neutron diffraction and the electronic structure calculation of LN-type LiSbO3 suggest a covalent-bonding character between Sb and O. When comparing the distortion of BO6 in LN-type ABO3, the distortions of SbO6 in LiSbO3 and SnO6 in ZnSnO3, which included a B cation with a d10 electronic configuration, were smaller than those of BO6 in LN-type oxides having the second-order Jahn-Teller active B cation, e.g., LiNbO3 and ZnTiO3. The temperature dependence of the lattice parameters, second harmonic generation, dielectric permittivity, and differential scanning calorimetry made it clear that a second-order ferroelectric-paraelectric phase transition occurs at a Curie temperature of Tc = 605 ± 10 K in LN-type LiSbO3. Further, first-principles density functional theory calculation suggested that perovskite-type LiSbO3 is less stable than LN-type LiSbO3 under even high pressure, and the ambient phase of LiSbO3 directly transforms to LN-type LiSbO3 under high pressure. The phase stability of LN-type LiSbO3 and the polar and ferroelectric properties are rationalized by the covalent bonding of Sb-O and the relatively weak Coulomb repulsion between Li+ and Sb5+.

3.
Dalton Trans ; 53(12): 5373-5381, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38412003

RESUMO

A new sodium tellurate has been hydrothermally synthesized and comprehensively analysed using spectroscopic and thermogravimetric techniques, resulting in the determination of its composition as NaTeO3(OH). The analysis of synchrotron X-ray and neutron diffraction data indicates that NaTeO3(OH) has a crystal structure similar to that of the previously reported tellurate, KTeO3(OH), with the space group P21/a (No. 14). NaTeO3(OH) consists of zigzag one-dimensional chains built by edge-sharing TeO6 octahedra, running parallel to the c-axis and connected to sodium and hydrogen atoms. The hydrogen atoms covalently bond to the terminal oxygen atoms on the one-dimensional chain and also form hydrogen bonds with other terminal oxygen atoms on nearby chains. The structure has been confirmed by optimization using the pseudopotential method and performing Bond Valence Sum (BVS) analysis. Although Li+ ions in LiTeO3(OH) can be exchanged reversibly with H+ ions, no ion exchange behaviour is observed in NaTeO3(OH). The difference is attributed to the size of the alkali ions and their crystal structure.

4.
J Am Chem Soc ; 133(42): 16920-9, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21888429

RESUMO

We synthesized two high-pressure polymorphs PbNiO(3) with different structures, a perovskite-type and a LiNbO(3)-type structure, and investigated their formation behavior, detailed structure, structural transformation, thermal stability, valence state of cations, and magnetic and electronic properties. A perovskite-type PbNiO(3) synthesized at 800 °C under a pressure of 3 GPa crystallizes as an orthorhombic GdFeO(3)-type structure with a space group Pnma. The reaction under high pressure was monitored by an in situ energy dispersive X-ray diffraction experiment, which revealed that a perovskit-type phase was formed even at 400 °C under 3 GPa. The obtained perovskite-type phase irreversibly transforms to a LiNbO(3)-type phase with an acentric space group R3c by heat treatment at ambient pressure. The Rietveld structural refinement using synchrotron X-ray diffraction data and the XPS measurement for both the perovskite- and the LiNbO(3)-type phases reveal that both phases possess the valence state of Pb(4+)Ni(2+)O(3). Perovskite-type PbNiO(3) is the first example of the Pb(4+)M(2+)O(3) series, and the first example of the perovskite containing a tetravalent A-site cation without lone pair electrons. The magnetic susceptibility measurement shows that the perovskite- and LiNbO(3)-type PbNiO(3) undergo antiferromagnetic transition at 225 and 205 K, respectively. Both the perovskite- and LiNbO(3)-type phases exhibit semiconducting behavior.

5.
Inorg Chem ; 50(12): 5389-95, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21604725

RESUMO

We synthesized polycrystalline pristine and Pr(3+)-doped perovskites La(1/3)MO(3) (M = Nb, Ta):Pr(3+) and investigated their crystal structure, optical absorption, and luminescence properties. The optical band gap of La(1/3)NbO(3) (3.2 eV) is smaller than that of La(1/3)TaO(3) (3.9 eV), which is primarily due to the difference in electronegativity between Nb and Ta. In La(1/3)NbO(3):Pr(3+), the red emission assigned to the f-f transition of Pr(3+) from the excited (1)D(2) level to the ground (3)H(4) state upon band gap photoexcitation (near-UV) was observed, whereas the f-f transition of Pr(3+) with blue-green emission from the excited (3)P(0) level to the ground (3)H(4) state was quenched. On the other hand, in La(1/3)TaO(3):Pr(3+), the blue-green emission upon band gap photoexcitation was observed. Their differences in emission behavior are attributed to the energy level of the ground and excited states of 4f(2) for Pr(3+), relative to the energy levels of the conduction and valence bands, and the trapped electron state, which mediates the relaxation of electron from the conduction band to the excited state of Pr(3+). La(1/3)NbO(3):Pr(3+) is a candidate red phosphor utilizing near-UV LED chips (e.g., λ = 375 nm) as an excitation source.

6.
Inorg Chem ; 50(13): 6392-8, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21644498

RESUMO

LiNbO(3)-type MnMO(3) (M = Ti, Sn) were synthesized under high pressure and temperature; their structures and magnetic, dielectric, and thermal properties were investigated; and their relationships were discussed. Optical second harmonic generation and synchrotron powder X-ray diffraction measurements revealed that both of the compounds possess a polar LiNbO(3)-type structure at room temperature. Weak ferromagnetism due to canted antiferromagnetic interaction was observed at 25 and 50 K for MnTiO(3) and MnSnO(3), respectively. Anomalies in the dielectric permittivity were observed at the weak ferromagnetic transition temperature for both the compounds, indicating the correlation between magnetic and dielectric properties. These results indicate that LiNbO(3)-type compounds with magnetic cations are new candidates for multiferroic materials.

7.
J Am Chem Soc ; 131(7): 2722-6, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19199637

RESUMO

A high-quality polycrystalline sample of the correlated 4d post-perovskite CaRhO(3) (Rh(4+): 4d(5), S(el) = 1/2) was attained under a moderate pressure of 6 GPa. Since the post-perovskite is quenchable at ambient pressure/temperature, it can be a valuable analogue of the post-perovskite MgSiO(3) (stable higher than 120 GPa and unstable at ambient pressure), which is a significant key material in earth science. The sample was subjected for measurements of charge-transport and magnetic properties. The data clearly indicate it goes into an antiferromagnetically ordered state below approximately 90 K in an unusual way, in striking contrast to what was observed for the perovskite phase. The post-perovskite CaRhO(3) offers future opportunities for correlated electrons science as well as earth science.

8.
J Am Chem Soc ; 130(21): 6704-5, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-18454520

RESUMO

A polar oxide ZnSnO3 was synthesized by a solid-state reaction under a pressure of 7 GPa and a temperature of 1000 degrees C. The crystal structure was determined by Rietveld analysis of the X-ray powder diffraction data. ZnSnO3 has a rhombohedral LiNbO3-type structure with unit cell parameters, a = 0.52622(1) nm, c = 1.40026(2) nm (space group: R3c). The polar structure is characterized by the large displacement of Zn along the c-axis in the ZnO6 octahedron based on the strong chemical bonding between Zn and three O. ZnSnO3 is a candidate piezoelectric and pyroelectric material as well as nonlinear optical material.

9.
Inorg Chem ; 47(14): 6296-302, 2008 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-18563894

RESUMO

We synthesized a novel perovskite-type oxide, HgSnO3, under high pressure and high temperature, and investigated the crystal and electronic structures as well as the transport properties. It was found that HgSnO3 possesses a trigonal-hexagonal lattice with space group R3c. The band gap of HgSnO3 estimated by diffuse reflectance spectrum measurement is relatively small (1.6 eV), irrespective of the large octahedral tilting distortion. The small band gap is caused by the increase in the bandwidth of the conduction and valence bands due to mixing between the empty Hg 6s orbitals and the antibonding Sn 5s-O 2p states and the mixing between the filled Hg 5d orbitals and the O 2p states, respectively. The electronic resistivity, Seebeck coefficient, and Hall coefficient measurements indicate that as-synthesized HgSnO3 is an n-type semiconductor.

10.
Inorg Chem ; 47(6): 1868-70, 2008 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-18269241

RESUMO

A new ternary platinum oxide, CaPtO3 was synthesized under a pressure of 7 GPa and a temperature of 1000 degrees C. The crystal structure of CaPtO3 was determined by Rietveld analysis of the X-ray powder diffraction data. CaPtO3 has a layered CaIrO3-type structure (orthorhombic, space group: Cmcm), which is the same as that of a post-perovskite MgSiO3 in the Earth's lower mantle. The magnetic susceptibility data indicate that the Pt ion in CaPtO3 is tetravalent in the low spin state with an electron configuration of t2g(6)eg(0)(S = 0). This finding is consistent with the insulating behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA