Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(9): 3753-3761, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33881884

RESUMO

Recent advances in oxide ferroelectric (FE) materials have rejuvenated the field of low-power, nonvolatile memories and made FE memories a commercial reality. Despite these advances, progress on commercial FE-RAM based on lead zirconium titanate has stalled due to process challenges. The recent discovery of ferroelectricity in scandium-doped aluminum nitride (AlScN) presents new opportunities for direct memory integration with logic transistors due to the low temperature of AlScN deposition (approximately 350 °C), making it compatible with back end of the line integration on silicon logic. Here, we present a FE-FET device composed of an FE-AlScN dielectric layer integrated with a two-dimensional MoS2 channel. Our devices show an ON/OFF ratio of ∼106, concurrent with a normalized memory window of 0.3 V/nm. The devices also demonstrate stable memory states up to 104 cycles and state retention up to 105 s. Our results suggest that the FE-AlScN/2D combination is ideal for embedded memory and memory-based computing architectures.

2.
ACS Nano ; 18(5): 4180-4188, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38271989

RESUMO

Recent advancements in ferroelectric field-effect transistors (FeFETs) using two-dimensional (2D) semiconductor channels and ferroelectric Al0.68Sc0.32N (AlScN) allow high-performance nonvolatile devices with exceptional ON-state currents, large ON/OFF current ratios, and large memory windows (MW). However, previous studies have solely focused on n-type FeFETs, leaving a crucial gap in the development of p-type and ambipolar FeFETs, which are essential for expanding their applicability to a wide range of circuit-level applications. Here, we present a comprehensive demonstration of n-type, p-type, and ambipolar FeFETs on an array scale using AlScN and multilayer/monolayer WSe2. The dominant injected carrier type is modulated through contact engineering at the metal-semiconductor junction, resulting in the realization of all three types of FeFETs. The effect of contact engineering on the carrier injection is further investigated through technology-computer-aided design simulations. Moreover, our 2D WSe2/AlScN FeFETs achieve high electron and hole current densities of ∼20 and ∼10 µA/µm, respectively, with a high ON/OFF ratio surpassing ∼107 and a large MW of >6 V (0.14 V/nm).

3.
Nat Nanotechnol ; 18(9): 1044-1050, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37217764

RESUMO

Three-dimensional monolithic integration of memory devices with logic transistors is a frontier challenge in computer hardware. This integration is essential for augmenting computational power concurrent with enhanced energy efficiency in big data applications such as artificial intelligence. Despite decades of efforts, there remains an urgent need for reliable, compact, fast, energy-efficient and scalable memory devices. Ferroelectric field-effect transistors (FE-FETs) are a promising candidate, but requisite scalability and performance in a back-end-of-line process have proven challenging. Here we present back-end-of-line-compatible FE-FETs using two-dimensional MoS2 channels and AlScN ferroelectric materials, all grown via wafer-scalable processes. A large array of FE-FETs with memory windows larger than 7.8 V, ON/OFF ratios greater than 107 and ON-current density greater than 250 µA um-1, all at ~80 nm channel length are demonstrated. The FE-FETs show stable retention up to 10 years by extension, and endurance greater than 104 cycles in addition to 4-bit pulse-programmable memory features, thereby opening a path towards the three-dimensional heterointegration of a two-dimensional semiconductor memory with silicon complementary metal-oxide-semiconductor logic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA