Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 257: 119346, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838752

RESUMO

BACKGROUND: Asthma exacerbations are an important cause of emergency department visits but much remains unknown about the role of environmental triggers including viruses and allergenic pollen. A better understanding of spatio-temporal variation in exposure and risk posed by viruses and pollen types could help prioritize public health interventions. OBJECTIVE: Here we quantify the effects of regionally important Cupressaceae pollen, tree pollen, other pollen types, rhinovirus, seasonal coronavirus, respiratory syncytial virus, and influenza on asthma-related emergency department visits for people living near eight pollen monitoring stations in Texas. METHODS: We used age stratified Poisson regression analyses to quantify the effects of allergenic pollen and viruses on asthma-related emergency department visits. RESULTS: Young children (<5 years of age) had high asthma-related emergency department rates (24.1 visits/1,000,000 person-days), which were mainly attributed to viruses (51.2%). School-aged children also had high rates (20.7 visits/1,000,000 person-days), which were attributed to viruses (57.0%), Cupressaceae pollen (0.7%), and tree pollen (2.8%). Adults had lower rates (8.1 visits/1,000,000 person-days) which were attributed to viruses (25.4%), Cupressaceae pollen (0.8%), and tree pollen (2.3%). This risk was spread unevenly across space and time; for example, during peak Cuppressaceae season, this pollen accounted for 8.2% of adult emergency department visits near Austin where these plants are abundant, but 0.4% in cities like Houston where they are not; results for other age groups were similar. CONCLUSIONS: Although viruses are a major contributor to asthma-related emergency department visits, airborne pollen can explain a meaningful portion of visits during peak pollen season and this risk varies over both time and space because of differences in plant composition.

2.
J Allergy Clin Immunol ; 151(3): 778-782.e1, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36400176

RESUMO

BACKGROUND: There are marked disparities in asthma-related emergency department (ED) visit rates among children by race and ethnicity. Following the implementation of coronavirus disease 2019 (COVID-19) prevention measures, asthma-related ED visits rates declined substantially. The decline has been attributed to the reduced circulation of upper respiratory viruses, a common trigger of asthma exacerbations in children. OBJECTIVES: To better understand the contribution of respiratory viruses to racial and ethnic disparities in ED visit rates, we investigated whether the reduction in ED visit rates affected Black, Latinx, and White children with asthma equally. METHODS: Asthma-related ED visits were extracted from electronic medical records at Dell Children's Medical Center in Travis County, Texas. ED visit rates among children with asthma were derived by race/ethnicity. Incidence rate ratios (IRRs) and 95% CIs were estimated by year (2019-2021) and season. RESULTS: In spring 2019, the ED visit IRRs comparing Black children with White children and Latinx children with White children were 6.67 (95% CI = 4.92-9.05) and 2.10 (95% CI = 1.57-2.80), respectively. In spring 2020, when infection prevention measures were implemented, the corresponding IRRs decreased to 1.73 (95% CI = 0.90-3.32) and 0.68 (95% CI = 0.38-1.23), respectively. CONCLUSIONS: The striking reduction of disparities in ED visits suggests that during nonpandemic periods, respiratory viruses contribute to the excess burden of asthma-related ED visits among Black and Latinx children with asthma. Although further investigation is needed to test this hypothesis, our findings raise the question of whether Black and Latinx children with asthma are more vulnerable to upper respiratory viral infections.


Assuntos
Asma , COVID-19 , Criança , Humanos , Serviço Hospitalar de Emergência , Asma/epidemiologia , Etnicidade , Texas
3.
Int J Biometeorol ; 67(8): 1363-1372, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37330426

RESUMO

Characterizing airborne pollen concentrations is crucial for supporting allergy and asthma management; however, pollen monitoring is labor intensive and, in the USA, geographically limited. The USA National Phenology Network (USA-NPN) engages thousands of volunteer observers in regularly documenting the developmental and reproductive status of plants. The reports of flower and pollen cone status contributed to the USA-NPN's platform, Nature's Notebook, have the potential to help address gaps in pollen monitoring by providing real-time, spatially explicit information from across the country. In this study, we assessed whether observations of flower and pollen cone status contributed to Nature's Notebook can serve as effective proxies for airborne pollen concentrations. We compared daily pollen concentrations from 36 National Allergy Bureau (NAB) stations in the USA with flowering and pollen cone status observations collected within 200 km of each NAB station in each year, 2009-2021, for 15 common tree taxa using Spearman's correlations. Of 350 comparisons, 58% of correlations were significant (p < 0.05). Comparisons could be made at the largest numbers of sites for Acer and Quercus. Quercus demonstrated a comparatively high proportion of tests with significant agreement (median ρ = 0.49). Juglans demonstrated the strongest overall coherence between the two datasets (median ρ = 0.79), though comparisons were made at only a small number of sites. For particular taxa, volunteer-contributed flowering status observations demonstrate promise to indicate seasonal patterns in airborne pollen concentrations. The quantity of observations, and therefore, their utility for supporting pollen alerts, could be substantially increased through a formal observation campaign.


Assuntos
Hipersensibilidade , Quercus , Humanos , Alérgenos , Estações do Ano , Monitoramento Ambiental , Pólen
4.
Environ Res ; 206: 112566, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922985

RESUMO

BACKGROUND: The exacerbation of asthma and respiratory allergies has been associated with exposure to aeroallergens such as pollen. Within an urban area, tree cover, level of urbanization, atmospheric conditions, and the number of source plants can influence spatiotemporal variations in outdoor pollen concentrations. OBJECTIVE: We analyze weekly pollen measurements made between March and October 2018 over 17 sites in Toronto, Canada. The main goals are: to estimate the concentration of different types of pollen across the season; estimate the association, if any, between pollen concentration and environmental variables, and provide a spatiotemporal surface of concentration of different types of pollen across the weeks in the studied period. METHODS: We propose an extension of the land-use regression model to account for the temporal variation of pollen levels and the high number of measurements equal to zero. Inference is performed under the Bayesian framework, and uncertainty of predicted values is naturally obtained through the posterior predictive distribution. RESULTS: Tree pollen was positively associated with commercial areas and tree cover, and negatively associated with grass cover. Both grass and weed pollen were positively associated with industrial areas and TC brightness and negatively associated with the northing coordinate. The total pollen was associated with a combination of these environmental factors. Predicted surfaces of pollen concentration are shown at some sampled weeks for all pollen types. SIGNIFICANCE: The predicted surfaces obtained here can help future epidemiological studies to find possible associations between pollen levels and some health outcome like respiratory allergies at different locations within the study area.


Assuntos
Alérgenos , Pólen , Teorema de Bayes , Cidades , Monitoramento Ambiental , Poaceae , Estações do Ano
5.
Aerobiologia (Bologna) ; 36(3): 417-431, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33456131

RESUMO

Epidemiological analyses of airborne allergenic pollen often use concentration measurements from a single station to represent exposure across a city, but this approach does not account for the spatial variation of concentrations within the city. Because there are few descriptions of urban-scale variation, the resulting exposure measurement error is unknown but potentially important for epidemiological studies. This study examines urban scale variation in pollen concentrations by measuring pollen concentrations of 13 taxa over 24-hr periods twice weekly at 25 sites in two seasons in Detroit, Michigan. Spatio-temporal variation is described using cumulative distribution functions and regression models. Daily pollen concentrations across the 25 stations varied considerably, and the average quartile coefficient of dispersion was 0.63. Measurements at a single site explained 3-85% of the variation at other sites, depending on the taxon, and 95% prediction intervals of pollen concentrations generally spanned one to two orders of magnitude. These results demonstrate considerable heterogeneity of pollen levels at the urban scale, and suggest that the use of a single monitoring site will not reflect pollen exposure over an urban area and can lead to sizable measurement error in epidemiological studies, particularly when a daily time-step is used. These errors might be reduced by using predictive daily pollen levels in models that combine vegetation maps, pollen production estimates, phenology models and dispersion processes, or by using coarser time-steps in the epidemiological analysis.

6.
Aerobiologia (Bologna) ; 36(3): 401-415, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33343061

RESUMO

Estimates of airborne pollen concentrations at the urban scale would be useful for epidemiologists, land managers, and allergy sufferers. Mechanistic models could be well suited for this task, but their development will require data on pollen production across cities, including estimates of pollen production by individual trees. In this study, we developed predictive models for pollen production as a function of trunk size, canopy area, and height, which are commonly recorded in tree surveys or readily extracted from remote sensing data. Pollen production was estimated by measuring the number of flowers per tree, the number of anthers per flower, and the number of pollen grains per anther. Variability at each morphological scale was assessed using bootstrapping. Pollen production was estimated for the following species: Acer negundo, Acer platanoides, Acer rubrum, Acer saccharinum, Betula papyrifera, Gleditsia triacanthos, Juglans nigra, Morus alba, Platanus x acerfolia, Populus deltoides, Quercus palustris, Quercus rubra, and Ulmus americana. Basal area predicted pollen production with a mean R2 of 0.72 (range: 0.41 - 0.99), whereas canopy area predicted pollen production with a mean R2 of 0.76 (range: 0.50 - 0.99). These equations are applied to two tree datasets to estimate total municipal pollen production and the spatial distribution of street tree pollen production for the focal species. We present some of the first individual-tree based estimates of pollen production at the municipal scale; the observed spatial heterogeneity in pollen production is substantial and can feasibly be included in mechanistic models of airborne pollen at fine spatial scales.

7.
Landsc Urban Plan ; 1902019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32831442

RESUMO

Predictions of airborne allergenic pollen concentrations at fine spatial scales require information on source plant location and pollen production. Such data are lacking at the urban scale, largely because manually mapping allergenic pollen producing plants across large areas is infeasible. However, modest-sized field surveys paired with allometric equations, remote sensing, and habitat distribution models can predict where these plants occur and how much pollen they produce. In this study, common ragweed (Ambrosia artemisiifolia) was mapped in a field survey in Detroit, MI, USA. The relationship between ragweed presence and habitat-related variables derived from aerial imagery, LiDAR, and municipal data were used to create a habitat distribution model, which was then used to predict ragweed presence across the study area (392 km2). The relationship between inflorescence length and pollen production was used to predict pollen production in the city. Ragweed occurs in 1.7% of Detroit and total pollen production is 312 × 1012 pollen grains annually, but ragweed presence was highly heterogeneous across the city. Ragweed was predominantly found in in vacant lots (75%) and near demolished structures (48%), and had varying associations with land cover types (e.g., sparse vegetation, trees, pavement) detected by remote sensing. These findings also suggest several management strategies that could help reduce levels of allergenic pollen, including appropriate post-demolition management practices. Spatially-resolved predictions for pollen production will allow mechanistic modeling of airborne allergenic pollen and improved exposure estimates for use in epidemiological and other applications.

8.
Oecologia ; 184(3): 701-713, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28573380

RESUMO

Predictions of plant responses to climate change are frequently based on organisms' presence in warmer locations, which are then assumed to reflect future performance in cooler areas. However, as plant life stages may be affected differently by environmental changes, there is little empirical evidence that this approach provides reliable estimates of short-term responses to global warming. Under this premise, we analyzed 8 years of early recruitment data, seed production and seedling establishment and survival, collected for two tree species at two latitudes. We quantified recruitment to a wide range of environmental conditions, temperature, soil moisture and light, and simulated recruitment under two forecasted climatic scenarios. Annual demographic transitions were affected by the particular conditions taking place during their onset, but the effects of similar environmental shifts differed among the recruitment stages; seed production was higher in warmer years, while seedling establishment and survival peaked during cold years. Within a species, these effects also varied between latitudes; increasing temperatures at the southern location will have stronger detrimental effects on recruitment than similar changes at the northern locations. Our simulations illustrate that warmer temperatures may increase seed production, but they will have a negative effect on establishment and survival. When the three early recruitment processes were simultaneously considered, simulations showed little change in recruitment dynamics at the northern site and a slight decrease at the southern site. It is only when we considered these three stages that we were able to assess likely changes in early recruitment under the predicted conditions.


Assuntos
Mudança Climática , Aquecimento Global , Plântula/crescimento & desenvolvimento , Clima , Solo , Árvores
9.
Ecology ; 97(9): 2331-2341, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27859086

RESUMO

Plant distributions are expected to shift in response to climate change, and range expansion dynamics will be shaped by the performance of individuals at the colonizing front. These plants will encounter new biotic communities beyond their range edges, and the net outcome of these encounters could profoundly affect colonization success. However, little is known about how biotic interactions vary across range edges and this has hindered efforts to predict changes in species distributions in response to climate change. In contrast, a rich literature documents how biotic interactions within species ranges vary according to distance to and density of conspecific individuals. Here, we test whether this framework can be extended to explain how biotic interactions differ beyond range edges, where conspecific adults are basically absent. To do so, we planted seven species of trees along a 450-km latitudinal gradient that crossed the current distributional range of five of these species and monitored foliar disease and invertebrate herbivory over 5 yr. Foliar disease and herbivory were analyzed as a function of distance to and density of conspecific and congeneric trees at several spatial scales. We found that within species ranges foliar disease was lower for seedlings that were farther from conspecific adults for Acer rubrum, Carya glabra, Quercus alba, and Robinia pseudoacacia. Beyond range edges, there was even less foliar disease for C. glabra, Q. alba, and R. pseudoacacia (A. rubrum was not planted outside its range). Liriodendron tulipifera did not experience reduced disease within or beyond its range. In contrast, Quercus velutina displayed significant but idiosyncratic patterns in disease at varying distances from conspecifics. Patterns of distance dependent herbivory across spatial scales was generally weak and in some cases negative (i.e., seedlings farther from conspecific adults had more herbivory). Overall, we conclude that differences in biotic interactions across range edges can be thought of as a spatial extension to the concept of distance dependent biotic interactions. This framework also provides the basis for general predictions of how distance dependent biotic interactions will change across range edges in other systems.


Assuntos
Mudança Climática , Doenças das Plantas , Folhas de Planta , Árvores , Ecossistema , Herbivoria , Dispersão Vegetal , Plântula
10.
Oecologia ; 182(1): 43-53, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27017603

RESUMO

Over the last two decades, an increasing number of studies have quantified the effects of herbivory on plant populations using stage-structured population models and integral projection models, allowing for the calculation of plant population growth rates (λ) with and without herbivory. In this paper, I assembled 29 studies and conducted a meta-regression to determine the importance of invertebrate herbivores to population growth rates (λ) while accounting for missing data. I found that invertebrate herbivory often induced important reductions in plant population growth rates (with herbivory, λ was 1.08 ± 0.36; without herbivory, λ was 1.28 ± 0.58). This relationship tended to be weaker for seed predation than for other types of herbivory, except when seed predation rates were very high. Even so, the amount by which studies reduced herbivory was a poor predictor of differences in population growth rates-which strongly cautions against using measured herbivory rates as a proxy for the impact of herbivores. Herbivory reduced plant population growth rates significantly more when potential growth rates were high, which helps to explain why there was less variation in actual population growth rates than in potential population growth rates. The synthesis of these studies also shows the need for future studies to report variance in estimates of λ and to quantify how λ varies as a function of plant density.


Assuntos
Herbivoria , Crescimento Demográfico , Animais , Insetos/efeitos dos fármacos , Invertebrados , Análise de Regressão
11.
Sci Total Environ ; 653: 1213-1222, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30759561

RESUMO

Temperature gradients in cities can cause inter-neighborhood differences in the timing of pollen release. However, most epidemiological studies examining allergenic pollen utilize daily measurements from a single pollen monitoring station with the implicit assumption that the measured time series of airborne pollen concentrations applies across the study areas, and that the temporal mismatch between concentrations at the counting station and elsewhere in the study area is negligible. This assumption is tested by quantifying temperature using satellite imagery, observing flowering times of oak (Quercus) and mulberry (Morus) trees at multiple sites, and collecting airborne pollen. Epidemiological studies of allergenic pollen are reviewed and temperatures within their study areas are quantified. In this one-year study, peak oak flowering time was well explained by average February nighttime temperature (R2 = 0.94), which varied by 6 °C across Detroit. This relationship was used to predict flowering phenology across the study region. Peak flowering ranged from April 20-May 13 and predicted a substantial portion of relative airborne oak pollen concentrations in Detroit (R2 = 0.46) and at the regional pollen monitoring station (R2 = 0.61). The regional pollen monitoring station was located in a cooler outlying area where peak flowering occurred around May 12 and peak pollen concentrations were measured on May 15. This provides evidence that the timing of pollen release varies substantially within a metropolitan area and challenges the assumption that pollen measurements at a single location are representative of an entire city. Across the epidemiological studies, 50% of study areas were not within 1 °C (equal to a lag or lead of 4 days in flowering time) of temperatures at the pollen measurement location. Epidemiological studies using a single pollen station as a proxy for pollen concentrations are prone to significant measurement error if the study area is climatically variable.


Assuntos
Pólen/crescimento & desenvolvimento , Temperatura , Árvores/crescimento & desenvolvimento , Alérgenos , Cidades , Monitoramento Ambiental , Flores/crescimento & desenvolvimento , Michigan , Imagens de Satélites , Estações do Ano
12.
Sci Total Environ ; 485-486: 435-440, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24742553

RESUMO

Pollen allergies are one of the most common health problems in the United States and over 20% of Americans are sensitized to the pollen produced by common ragweed (Ambrosia artemisiifolia L.). Despite the importance of allergenic pollen to public health, no research has linked land use and plant populations to spatial heterogeneity in airborne pollen concentrations. In order to quantify these relationships and elucidate the processes which lead to pollen exposure, we surveyed ragweed stem density in Detroit (Michigan, USA) as a function of land use. We then deployed 34 pollen collectors throughout the city and recorded ragweed cover in the immediate vicinity of each pollen collector. We found that ragweed populations were highest in vacant lots, a common land cover type in Detroit. Because ragweed population density was so strongly correlated to vacant lots, for which spatially explicit data were available, we were able to investigate whether observed ragweed pollen concentrations were a function of land use at the spatial scales of 10 m and 1 km. Both relationships were significant, and the combination of these two variables predicts a large portion of airborne ragweed pollen concentrations (R(2)=0.48). These results emphasize the important role of pollen production within the urban environment and show that management of allergenic pollen producing plants must be considered at multiple spatial scales. Our findings also demonstrate that there is too much spatial heterogeneity for a pollen collector at any given site to portray the allergenic pollen load experienced by different individuals within the same city. Finally, we discuss how spatial correlations between socio-economic status, vacant lots, and ragweed could help to explain the disproportionate amount of allergies and ragweed sensitization experienced by low income and minority populations in Detroit.


Assuntos
Alérgenos/análise , Ambrosia/fisiologia , Antígenos de Plantas/análise , Monitoramento Ambiental , Extratos Vegetais/análise , Pólen , Michigan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA