Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 54(8): e2350788, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38708681

RESUMO

The high-affinity IgE receptor FcεRI is the mast cell (MC) receptor responsible for the involvement of MCs in IgE-associated allergic disorders. Activation of the FcεRI is achieved via crosslinking by multivalent antigen (Ag) recognized by IgE resulting in degranulation and proinflammatory cytokine production. In comparison to the T- and B-cell receptor complexes, for which several co-receptors orchestrating the initial signaling events have been described, information is scarce about FcεRI-associated proteins. Additionally, it is unclear how FcεRI signaling synergizes with input from other receptors and how regulators affect this synergistic response. We found that the HDL receptor SR-BI (gene name: Scarb1/SCARB1) is expressed in MCs, functionally associates with FcεRI, and regulates the plasma membrane cholesterol content in cholesterol-rich plasma membrane nanodomains. This impacted the activation of MCs upon co-stimulation of the FcεRI with receptors known to synergize with FcεRI signaling. Amongst them, we investigated the co-activation of the FcεRI with the receptor tyrosine kinase KIT, the IL-33 receptor, and GPCRs activated by adenosine or PGE2. Scarb1-deficient bone marrow-derived MCs showed reduced cytokine secretion upon co-stimulation conditions suggesting a role for plasma membrane-associated cholesterol regulating respective MC activation. Mimicking Scarb1 deficiency by cholesterol depletion employing MßCD, we identified PKB and PLCγ1 as cholesterol-sensitive proteins downstream of FcεRI activation in bone marrow-derived MCs. When MCs were co-stimulated with stem cell factor (SCF) and Ag, PLCγ1 activation was boosted, which could be mitigated by cholesterol depletion and SR-BI inhibition. Similarly, SR-BI inhibition attenuated the synergistic response to PGE2 and anti-IgE in the human ROSAKIT WT MC line, suggesting that SR-BI is a crucial regulator of synergistic MC activation.


Assuntos
Membrana Celular , Colesterol , Mastócitos , Receptores de IgE , Transdução de Sinais , Animais , Humanos , Camundongos , Degranulação Celular/imunologia , Membrana Celular/metabolismo , Colesterol/metabolismo , Citocinas/metabolismo , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipase C gama/metabolismo , Receptores de IgE/metabolismo , Receptores de IgE/imunologia , Receptores Depuradores Classe B/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/imunologia , Transdução de Sinais/imunologia
2.
FASEB J ; 30(6): 2225-35, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26936360

RESUMO

Antigen-induced mast cell (MC) activation via cross-linking of IgE-bound high-affinity receptors for IgE (FcεRI) underlies type I allergy and anaphylactic shock. Comprehensive knowledge of FcεRI regulation is thus required. We have identified a functional interaction between FcεRI and CD13 in murine MCs. Antigen-triggered activation of IgE-loaded FcεRI results in cocapping and cointernalization of CD13 and equivalent internalization rates of up to 40%. Cointernalization is not unspecific, because ligand-driven KIT internalization is not accompanied by CD13 internalization. Moreover, antibody-mediated cross-linking of CD13 causes IL-6 production in an FcεRI-dependent manner. These data are indicative of a functional interaction between FcεRI and CD13 on MCs. To determine the role of this interaction, CD13-deficient bone marrow-derived MCs (BMMCs) were analyzed. Intriguingly, antigen stimulation of CD13-deficient BMMCs results in significantly increased degranulation and proinflammatory cytokine production compared to wild-type cells. Furthermore, in a low-dose model of passive systemic anaphylaxis, antigen-dependent decrease in body temperature, reflecting the anaphylactic reaction, is substantially enhanced by the CD13 inhibitor bestatin (-5.9 ± 0.6°C) and by CD13 deficiency (-8.8 ± 0.6°C) in contrast to controls (-1.2 ± 1.97°C). Importantly, bestatin does not aggravate anaphylaxis in CD13-deficient mice. Thus, we have identified CD13 as a novel negative regulator of MC activation in vitro and in vivo-Zotz, J. S., Wölbing, F., Lassnig, C., Kauffmann, M., Schulte, U., Kolb, A., Whitelaw, B., Müller, M., Biedermann, T., Huber, M. CD13/aminopeptidase N is a negative regulator of mast cell activation.


Assuntos
Antígenos CD13/metabolismo , Mastócitos/fisiologia , Anafilaxia , Animais , Antígenos CD13/antagonistas & inibidores , Antígenos CD13/genética , Proliferação de Células , Dinitrofenóis/imunologia , Regulação da Expressão Gênica/fisiologia , Leucina/análogos & derivados , Leucina/farmacologia , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de IgE/genética , Receptores de IgE/metabolismo , Albumina Sérica/imunologia
3.
Front Immunol ; 14: 1154416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063827

RESUMO

Mast cells (MCs) are immune cells of the myeloid lineage distributed in tissues throughout the body. Phenotypically, they are a heterogeneous group characterized by different protease repertoires stored in secretory granules and differential presence of receptors. To adequately address aspects of MC biology either primary MCs isolated from human or mouse tissue or different human MC lines, like HMC-1.1 and -1.2, or rodent MC lines like L138.8A or RBL-2H3 are frequently used. Nevertheless, cellular systems to study MC functions are very limited. We have generated a murine connective tissue-like MC line, termed PMC-306, derived from primary peritoneal MCs (PMCs), which spontaneously transformed. We analyzed PMC-306 cells regarding MC surface receptor expression, effector functions and respective signaling pathways, and found that the cells reacted very similar to primary wildtype (WT) PMCs. In this regard, stimulation with MAS-related G-protein-coupled receptor member B2 (MRGPRB2) ligands induced respective signaling and effector functions. Furthermore, PMC-306 cells revealed significantly accelerated cell cycle progression, which however was still dependent on interleukine 3 (IL-3) and stem cell factor (SCF). Phenotypically, PMC-306 cells adopted an immature connective tissue-like MCs appearance. The observation of cellular transformation was accompanied by the loss of Cdkn2a and Arf expression, which are both described as critical cell cycle regulators. The loss of Cdkn2a and Arf expression could be mimicked in primary bone marrow-derived mast cells (BMMCs) by sustained SCF supplementation strongly arguing for an involvement of KIT activation in the regulation of Cdkn2a/Arf expression. Hence, this new cell line might be a useful tool to study further aspects of PMC function and to address tumorigenic processes associated with MC leukemia.


Assuntos
Mastócitos , Peritônio , Animais , Humanos , Camundongos , Linhagem Celular , Tecido Conjuntivo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fator de Células-Tronco/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fatores de Ribosilação do ADP/metabolismo
4.
PLoS One ; 11(6): e0158104, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27337047

RESUMO

Mast cells (MCs) are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC) or mucosal (MMC) type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT) and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs) and immature MC precursors from the bone marrow (BM). The latter are differentiated in vitro to yield BM-derived MCs (BMMC). These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Mastócitos/citologia , Mastócitos/metabolismo , Peritônio/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Biomarcadores , Técnicas de Cultura de Células , Diferenciação Celular , Separação Celular , Células Cultivadas , Feminino , Imunofenotipagem , Masculino , Camundongos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA