Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cent Nerv Syst Agents Med Chem ; 22(1): 68-78, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899919

RESUMO

BACKGROUND: A simultaneous administration of an acetylcholinesterase (AChE) inhibitor and a NSAID as a drug cocktail has been documented to exhibit significantly protective effects in AD patients. But it suffers from poor patent compliance, pharmacodynamics and pharmacokinetic issues. OBJECTIVE: The present study is aimed to design and synthesize a hybrid molecule capable of exhibiting both AChE inhibition and anti-inflammatory activities for de-accelerating the progression of AD. The synthesized molecules will be evaluated for in vitro and in vivo models. METHODS: The present study involves the coupling of ibuprofen or naproxen to varied disubstituted amines (AChE inhibitor pharmacophore) through benzimidazole to develop two series of compounds i.e. IB01-IB05 and NP01-NP05. The synthesized compounds were characterized using FTIR, 1H-NMR, 13C-NMR and MS. All compounds were evaluated for in vitro AChE inhibitory and COX inhibitory activities. The most active compound was taken for in vivo evaluation. RESULTS: Compounds of series IB01-IB05 are found more potent as compared to NP01-NP05. The maximally potent compound IB04 in in vitro evaluation is selected for in vivo evaluation of memory restoration activity using scopolamine-induced amnesia model in mice. It significantly reverses the scopolamine-induced changes (i.e., escape latency time, mean time spent in target quadrant, brain AChE activity and oxidative stress) in a dose-dependent manner. IB04 at 8 mg/kg is significantly effective in lowering AD manifestation in comparison to donepezil. CONCLUSION: The findings indicate that Benzimidazole hybrids utilizing ibuprofen and pyrrolidine moiety may prove a useful template for the development of new chemical moieties against AD with multiple potencies.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Ibuprofeno/farmacologia , Ibuprofeno/uso terapêutico , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Escopolamina , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA