Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33906944

RESUMO

Creating and characterizing individual genetic variants remains limited in scale, compared to the tremendous variation both existing in nature and envisioned by genome engineers. Here we introduce retron library recombineering (RLR), a methodology for high-throughput functional screens that surpasses the scale and specificity of CRISPR-Cas methods. We use the targeted reverse-transcription activity of retrons to produce single-stranded DNA (ssDNA) in vivo, incorporating edits at >90% efficiency and enabling multiplexed applications. RLR simultaneously introduces many genomic variants, producing pooled and barcoded variant libraries addressable by targeted deep sequencing. We use RLR for pooled phenotyping of synthesized antibiotic resistance alleles, demonstrating quantitative measurement of relative growth rates. We also perform RLR using the sheared genomic DNA of an evolved bacterium, experimentally querying millions of sequences for causal variants, demonstrating that RLR is uniquely suited to utilize large pools of natural variation. Using ssDNA produced in vivo for pooled experiments presents avenues for exploring variation across the genome.


Assuntos
Sistemas CRISPR-Cas/genética , DNA de Cadeia Simples/genética , Resistência Microbiana a Medicamentos/genética , Engenharia Genética , Genoma Bacteriano/genética , Alelos , DNA de Cadeia Simples/biossíntese , Escherichia coli/genética , Biblioteca Gênica , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Ensaios de Triagem em Larga Escala , Saccharomyces cerevisiae/genética , Biologia Sintética
2.
Evol Lett ; 8(5): 735-747, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39328287

RESUMO

The emergence and spread of antibiotic resistance in bacterial pathogens is a global health threat. One important unanswered question is how antibiotic resistance influences the ability of a pathogen to invade the host-associated microbiome. Here we investigate how antibiotic resistance impacts the ability of a bacterial pathogen to invade bacteria from the microbiome, using the opportunistic bacterial pathogen Pseudomonas aeruginosa and the respiratory microbiome as our model system. We measure the ability of P. aeruginosa spontaneous antibiotic-resistant mutants to invade pre-established cultures of commensal respiratory microbes in an assay that allows us to link specific resistance mutations with changes in invasion ability. While commensal respiratory microbes tend to provide some degree of resistance to P. aeruginosa invasion, antibiotic resistance is a double-edged sword that can either help or hinder the ability of P. aeruginosa to invade. The directionality of this help or hindrance depends on both P. aeruginosa genotype and respiratory microbe identity. Specific resistance mutations in genes involved in multidrug efflux pump regulation are shown to facilitate the invasion of P. aeruginosa into Staphylococcus lugdunensis, yet impair invasion into Rothia mucilaginosa and Staphylococcus epidermidis. Streptococcus species provide the strongest resistance to P. aeruginosa invasion, and this is maintained regardless of antibiotic resistance genotype. Our study demonstrates how the cost of mutations that provide enhanced antibiotic resistance in P. aeruginosa can crucially depend on community context. We suggest that attempts to manipulate the microbiome should focus on promoting the growth of commensals that can increase the fitness costs associated with antibiotic resistance and provide robust inhibition of both wildtype and antibiotic-resistant pathogen strains.

3.
ISME J ; 17(11): 2058-2069, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37723338

RESUMO

Antibiotic resistance tends to carry fitness costs, making it difficult to understand how resistance can be maintained in the absence of continual antibiotic exposure. Here we investigate this problem in the context of mcr-1, a globally disseminated gene that confers resistance to colistin, an agricultural antibiotic that is used as a last resort for the treatment of multi-drug resistant infections. Here we show that regulatory evolution has fine-tuned the expression of mcr-1, allowing E. coli to reduce the fitness cost of mcr-1 while simultaneously increasing colistin resistance. Conjugative plasmids have transferred low-cost/high-resistance mcr-1 alleles across an incredible diversity of E. coli strains, further stabilising mcr-1 at the species level. Regulatory mutations were associated with increased mcr-1 stability in pig farms following a ban on the use of colistin as a growth promoter that decreased colistin consumption by 90%. Our study shows how regulatory evolution and plasmid transfer can combine to stabilise resistance and limit the impact of reducing antibiotic consumption.


Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Suínos , Colistina/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Bactérias/genética , Plasmídeos/genética , Testes de Sensibilidade Microbiana
4.
Am J Reprod Immunol ; 85(3): e13343, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32905653

RESUMO

PROBLEM: Previous studies identified circulating CD14+ HLA-DRlo/- monocytic cells as an immune suppressive subset in solid malignancies, such as prostate, renal cell carcinoma, and pancreatic cancer. Such monocytic cells have been implicated not only in tumour progression but also as a potential barrier for immunotherapy. This study examined the relationship between the frequency of circulating monocytic cells and epithelial ovarian cancer (EOC) progression pre- and post-frontline chemotherapy, defined by disease stage, which is a leading prognostic factor for this malignancy. METHOD OF STUDY: Incident cases of 236 women with EOC were recruited and comprehensive flow cytometry was utilized to assess the frequency of peripheral blood CD33+ CD11b+ HLA-DR-/low CD14+ CD15- monocytic cells, henceforth termed CD14+ HLA-DRlo/- monocytic cells, prior to and after completion of frontline chemotherapy. Multivariable odds ratios (OR) were used to estimate the association between CD14+ HLA-DRlo/- monocytic cell percentages and disease stage. Wilcoxon signed-rank tests evaluated changes in these monocytic cell levels pre- and post-chemotherapy in a patient subset (n = 70). RESULTS: Patients with elevated frequencies of circulating CD14+ HLA-DRlo/- monocytic cells at diagnosis were at 3.33-fold greater odds of having advanced stage (III/IV) EOC (CI: 1.04-10.64), with a significant trend in increasing CD14+ HLA-DRlo/- monocytic cell levels (P = .04). There was a 2.02% median decrease of these monocytic cells post-chemotherapy among a subset of patients with advanced stage disease (P < .0001). CONCLUSION: These findings support the potential clinical relevance of CD14+ HLA-DRlo/- monocytic cells in EOC for prognosis and may indicate a non-invasive biomarker to measure disease progression.


Assuntos
Células Epiteliais/patologia , Imidas/imunologia , Neoplasias Ovarianas/imunologia , Polifosfatos/imunologia , Idoso , Biomarcadores , Carcinogênese , Progressão da Doença , Feminino , Antígenos HLA-DR/metabolismo , Humanos , Tolerância Imunológica , Receptores de Lipopolissacarídeos/metabolismo , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Ovarianas/diagnóstico , Prognóstico
5.
ACS Synth Biol ; 9(9): 2239-2245, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32786347

RESUMO

Isoprenoid quinones are bioactive molecules that include an isoprenoid chain and a quinone head. They are traditionally found to be involved in primary metabolism, where they act as electron transporters, but specialized isoprenoid quinones are also produced by all domains of life. Here, we report the engineering of a baker's yeast strain, Saccharomyces cerevisiae EPYFA3, for the production of isoprenoid quinones. Our yeast strain was developed through overexpression of the shikimate pathway in a well-established recipient strain (S. cerevisiae EPY300) where the mevalonate pathway is overexpressed. As a proof of concept, our new host strain was used to overproduce the endogenous isoprenoid quinone coenzyme Q6, resulting in a nearly 3-fold production increase. EPYFA3 represents a valuable platform for the heterologous production of high value isoprenoid quinones. EPYFA3 will also facilitate the elucidation of isoprenoid quinone biosynthetic pathways.


Assuntos
Benzoquinonas/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Benzoquinonas/química , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Terpenos/química , Ubiquinona/genética , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA