Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 12(7): e9125, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35898426

RESUMO

Although most prey have multiple predator species, few studies have quantified how prey respond to the temporal niches of multiple predators which pose different levels of danger. For example, intraspecific variation in diel activity allows white-tailed deer (Odocoileus virginianus) to reduce fawn activity overlap with coyotes (Canis latrans) but finding safe times of day may be more difficult for fawns in a multi-predator context. We hypothesized that within a multi-predator system, deer would allocate antipredation behavior optimally based on combined mortality risk from multiple sources, which would vary depending on fawn presence. We measured cause-specific mortality of 777 adult (>1-year-old) and juvenile (1-4-month-old) deer and used 300 remote cameras to estimate the activity of deer, humans, and predators including American black bears (Ursus americanus), bobcats (Lynx rufus), coyotes, and wolves (Canis lupus). Predation and vehicle collisions accounted for 5.3 times greater mortality in juveniles (16% mortality from bears, coyotes, bobcats, wolves, and vehicles) compared with adults (3% mortality from coyotes, wolves, and vehicles). Deer nursery groups (i.e., ≥1 fawn present) were more diurnal than adult deer without fawns, causing fawns to have 24-38% less overlap with carnivores and 39% greater overlap with humans. Supporting our hypothesis, deer nursery groups appeared to optimize diel activity to minimize combined mortality risk. Temporal refuge for fawns was likely the result of carnivores avoiding humans, simplifying diel risk of five species into a trade-off between diurnal humans and nocturnal carnivores. Functional redundancy among multiple predators with shared behaviors may partially explain why white-tailed deer fawn predation rates are often similar among single- and multi-predator systems.

2.
Ecol Evol ; 12(2): e8542, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35154647

RESUMO

The parallel niche release hypothesis (PNR) indicates that reduced competition with dominant competitors results in greater density and niche breadth of subordinate competitors and which may support an adaptive advantage.We assessed support for the PNR by evaluating relationships between variation in niche breadth and intra- and interspecific density (an index of competition) of wolves (Canis lupus) coyotes (C. latrans), and bobcats (Lynx rufus).We estimated population density (wolf track surveys, coyote howl surveys, and bobcat hair snare surveys) and variability in space use (50% core autocorrelated kernel density home range estimators), temporal activity (hourly and overnight speed), and dietary (isotopic δ13C and δ15N) niche breadth of each species across three areas of varying wolf density in the Upper Peninsula of Michigan, USA, 2010-2019.Densities of wolves and coyotes were inversely related, and increased variability in space use, temporal activity, and dietary niche breadth of coyotes was associated with increased coyote density and decreased wolf density supporting the PNR. Variability in space use and temporal activity of wolves and dietary niche breadth of bobcats also increased with increased intraspecific density supporting the PNR.Through demonstrating decreased competition between wolves and coyotes and increased coyote niche breadth and density, our study provides multidimensional support for the PNR. Knowledge of the relationship between niche breadth and population density can inform our understanding of the role of competition in shaping the realized niche of species.

3.
Ecol Evol ; 12(5): e8875, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600694

RESUMO

Understanding the types and magnitude of human-caused mortality is essential for maintaining viable large carnivore populations. We used a database of cause-specific mortality to examine how hunting regulations and landscape configurations influenced human-caused mortality of North American gray wolves (Canis lupus). Our dataset included 21 studies that monitored the fates of 3564 wolves and reported 1442 mortalities. Human-caused mortality accounted for 61% of mortality overall, with 23% due to illegal harvest, 16% due to legal harvest, and 12% the result of management removal. The overall proportion of anthropogenic wolf mortality was lowest in areas with an open hunting season compared to areas with a closed hunting season or mixed hunting regulations, suggesting that harvest mortality was neither fully additive nor compensatory. Proportion of mortality from management removal was reduced in areas with an open hunting season, suggesting that legal harvest may reduce human-wolf conflicts or alternatively that areas with legal harvest have less potential for management removals (e.g., less livestock depredation). Proportion of natural habitat was negatively correlated with the proportion of anthropogenic and illegal harvest mortality. Additionally, the proportion of mortality due to illegal harvest increased with greater natural habitat fragmentation. The observed association between large patches of natural habitat and reductions in several sources of anthropogenic wolf mortality reiterate the importance of habitat preservation to maintain wolf populations. Furthermore, effective management of wolf populations via implementation of harvest may reduce conflict with humans. Effective wolf conservation will depend on holistic strategies that integrate ecological and socioeconomic factors to facilitate their long-term coexistence with humans.

4.
Sci Rep ; 12(1): 18890, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344560

RESUMO

Protected areas that restrict human activities can enhance wildlife habitat quality. Efficacy of protected areas can be improved with increased protection from illegal activities and presence of buffer protected areas that surround a core protected area. Habitat value of protected areas also can be affected by seasonal variation in anthropogenic pressures. We examined seasonal space use by African lions (Panthera leo) within a core protected area, Serengeti National Park, Tanzania, and surrounding buffer protected areas with varying protection strengths. We used lion locations in logistic regression models during wet and dry seasons to estimate probability of use in relation to protection strength, distance to protected area edge, human and livestock density, distance to roads and rivers, and land cover. Lions used strongly protected buffer areas over the core protected area and unprotected areas, and moved away from protected area boundaries toward the core protected area when buffer protected areas had less protection. Lions avoided high livestock density in the wet season and high human density in the dry season. Increased strength of protection can decrease edge effects on buffer areas and help maintain habitat quality of core protected areas for lions and other wildlife species.


Assuntos
Leões , Humanos , Animais , Ecossistema , Tanzânia , Atividades Humanas , Parques Recreativos , Animais Selvagens
5.
Ecol Evol ; 11(3): 1413-1431, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33598141

RESUMO

Interference competition occurs when two species have similar resource requirements and one species is dominant and can suppress or exclude the subordinate species. Wolves (Canis lupus) and coyotes (C. latrans) are sympatric across much of their range in North America where white-tailed deer (Odocoileus virginianus) can be an important prey species. We assessed the extent of niche overlap between wolves and coyotes using activity, diet, and space use as evidence for interference competition during three periods related to the availability of white-tailed deer fawns in the Upper Great Lakes region of the USA. We assessed activity overlap (Δ) with data from accelerometers onboard global positioning system (GPS) collars worn by wolves (n = 11) and coyotes (n = 13). We analyzed wolf and coyote scat to estimate dietary breadth (B) and food niche overlap (α). We used resource utilization functions (RUFs) with canid GPS location data, white-tailed deer RUFs, ruffed grouse (Bonasa umbellus) and snowshoe hare (Lepus americanus) densities, and landscape covariates to compare population-level space use. Wolves and coyotes exhibited considerable overlap in activity (Δ = 0.86-0.92), diet (B = 3.1-4.9; α = 0.76-1.0), and space use of active and inactive RUFs across time periods. Coyotes relied less on deer as prey compared to wolves and consumed greater amounts of smaller prey items. Coyotes exhibited greater population-level variation in space use compared to wolves. Additionally, while active and inactive, coyotes exhibited greater selection of some land covers as compared to wolves. Our findings lend support for interference competition between wolves and coyotes with significant overlap across resource attributes examined. The mechanisms through which wolves and coyotes coexist appear to be driven largely by how coyotes, a generalist species, exploit narrow differences in resource availability and display greater population-level plasticity in resource use.

6.
Sci Rep ; 11(1): 12146, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108524

RESUMO

Where two sympatric species compete for the same resource and one species is dominant, there is potential for the subordinate species to be affected through interference competition or energetic costs of avoiding predation. Fishers (Pekania pennanti) and American martens (Martes americana) often have high niche overlap, but fishers are considered dominant and potentially limiting to martens. We observed presence and vigilance of fishers and martens at winter carcass sites using remote cameras in Michigan, USA, to test the hypothesis that interference competition from fishers creates a landscape of fear for martens. Within winters, fishers co-occupied 78-88% of sites occupied by martens, and martens co-occupied 79-88% of sites occupied by fishers. Fishers displaced martens from carcasses during 21 of 6117 marten visits, while martens displaced fishers during 0 of 1359 fisher visits. Martens did not alter diel activity in response to fisher use of sites. Martens allocated 37% of time to vigilance compared to 23% for fishers, and martens increased vigilance up to 8% at sites previously visited by fishers. Fishers increased vigilance by up to 8% at sites previously visited by martens. Our results indicate that fishers were dominant over martens, and martens had greater baseline perception of risk than fishers. However, fishers appeared to be also affected as the dominant competitor by putting effort into scanning for martens. Both species appeared widespread and common in our study area, but there was no evidence that fishers spatially or temporally excluded martens from scavenging at carcasses other than occasional short-term displacement when a fisher was present. Instead, martens appeared to mitigate risk from fishers by using vigilance and short-term avoidance. Multiple short-term anti-predator behaviors within a landscape of fear may facilitate coexistence among carnivore species.

7.
Ecology ; 102(11): e03494, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34309013

RESUMO

Trophic cascades reportedly structure ecological communities through indirect species interactions. Though the predator-herbivore-autotroph relationship has received much attention, mechanistic evidence supporting intraguild trophic cascades is rare. We established 348 remote camera sites (1 August-5 September 2019) across seven study areas of varying wolf (Canis lupus) density including one study area where wolves were absent in northern Michigan, USA. Using multi-species occupancy modeling at species-relevant spatial scales, we evaluated the hypothesis that increased wolf occurrence suppresses coyote (C. latrans) occurrence with corresponding increased red fox (Vulpes vulpes) occurrence mediated by land cover edge density, human presence, and temporal partitioning. Remote cameras recorded >600,000 images and included 6,370, 10,137, and 4,876 detections of wolves, coyotes, and foxes, respectively. Fox occupancy probability was more than three times as high (0.29) at camera sites where wolves were present, relative to sites wolves were absent (0.09). Pairwise species interactions supported expected size-based dominance patterns among canids and insignificant effects were directionally consistent with reported reduced strength of top-down effects in peripheral wolf range. Increased edge density also increased co-occurrence of coyote and wolves, likely a function of increased prey availability and refugia for coyotes. Though foxes occurred in spatial proximity to wolves, competition was limited by greater temporal partitioning than observed between coyotes and foxes that were spatially segregated. Collectively, our results provide marginal support for the reported trophic cascade among wolves, coyotes, and foxes wherein top-down effects may be reduced near the edge of current wolf distributions. As predators continue to recolonize portions of their historic range, knowledge of the effects on intraguild predators has implications for species management and predicting prey population responses.


Assuntos
Coiotes , Lobos , Animais , Raposas , Michigan
8.
Ecol Evol ; 10(3): 1666-1677, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32076542

RESUMO

A relationship between winter weather and survival of northern ungulates has long been established, yet the possible roles of biological (e.g., nutritional status) and environmental (e.g., weather) conditions make it important to determine which potential limiting factors are most influential.Our objective was to examine the potential effects of individual (body mass and age) and extrinsic (winter severity and snowmelt conditions) factors on the magnitude and timing of mortality for adult (>2.5 years old) female white-tailed deer (Odocoileus virginianus [Zimmerman, 1780]) during February-May in the Upper Peninsula of Michigan, USA.One hundred and fifty deer were captured and monitored during 2009-2015 in two areas with varying snowfall. February-May survival ranged from 0.24 to 0.89 (mean = 0.69) across years. Mortality risk increased 1.9% with each unit increase in cumulative winter severity index, decreased 8.2% with each cumulative snow-free day, and decreased 4.3% with each kg increase in body mass. Age and weekly snow depth did not influence weekly deer survival. Predation, primarily from coyote (Canis latrans [Say, 1823]) and wolves (Canis lupus [L., 1758]), accounted for 78% of known-cause mortalities.Our results suggest that cumulative winter severity, and possibly to a lesser degree deer condition entering winter, impacted deer winter survival. However, the timing of spring snowmelt appeared to be the most influential factor determining late-winter mortality of deer in our study. This supports the hypothesis that nutrition and energetic demands from weather conditions are both important to northern ungulate winter ecology. Under this model, a delay of several weeks in the timing of spring snowmelt could exert a large influence on deer survival, resulting in a survival bottleneck.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA