Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nature ; 596(7872): 372-376, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34408328

RESUMO

Many emerging materials, such as ultrastable glasses1,2 of interest for phone displays and OLED television screens, owe their properties to a gradient of enhanced mobility at the surface of glass-forming liquids. The discovery of this surface mobility enhancement3-5 has reshaped our understanding of the behaviour of glass formers and of how to fashion them into improved materials. In polymeric glasses, these interfacial modifications are complicated by the existence of a second length scale-the size of the polymer chain-as well as the length scale of the interfacial mobility gradient6-9. Here we present simulations, theory and time-resolved surface nano-creep experiments to reveal that this two-scale nature of glassy polymer surfaces drives the emergence of a transient rubbery, entangled-like surface behaviour even in polymers comprised of short, subentangled chains. We find that this effect emerges from superposed gradients in segmental dynamics and chain conformational statistics. The lifetime of this rubbery behaviour, which will have broad implications in constraining surface relaxations central to applications including tribology, adhesion, and surface healing of polymeric glasses, extends as the material is cooled. The surface layers suffer a general breakdown in time-temperature superposition (TTS), a fundamental tenet of polymer physics and rheology. This finding may require a reevaluation of strategies for the prediction of long-time properties in polymeric glasses with high interfacial areas. We expect that this interfacial transient elastomer effect and TTS breakdown should normally occur in macromolecular systems ranging from nanocomposites to thin films, where interfaces dominate material properties5,10.

2.
Chembiochem ; : e202400436, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858172

RESUMO

Forming nano-assemblies is essential for delivering DNA conjugates into cells, with the DNA density in the nano-assembly playing an important role in determining the uptake efficiency. In this study, we developed a strategy for the facile synthesis of DNA strands bearing perfluoroalkyl (RF) groups (RF-DNA conjugates) and investigated how they affect cellular uptake. An RF-DNA conjugate bearing a long RF group at the DNA terminus forms a nano-assembly with a high DNA density, which results in greatly enhanced cellular uptake. The uptake mechanism is mediated by clathrin-dependent endocytosis. The use of RF groups to densely assemble negatively charged DNA is a useful strategy for designing drug delivery carriers.

3.
Langmuir ; 40(18): 9725-9731, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652685

RESUMO

A better understanding of the aggregation states of adhesive molecules in the interfacial region with an adherend is crucial for controlling the adhesion strength and is of great inherent academic interest. The adhesion mechanism has been described through four theories: adsorption, mechanical, diffusion, and electronic. While interfacial characterization techniques have been developed to validate the aforementioned theories, that related to the electronic theory has not yet been thoroughly studied. We here directly detected the electronic interaction between a commonly used thermosetting adhesive, cured epoxy of diglycidyl ether of bisphenol A (DGEBA) and 4,4'-diaminodiphenylmethane (DDM), and copper (Cu). This study used a combination of density functional theory (DFT) calculations and femtosecond transient absorption spectroscopic (TAS) measurements as this epoxy adhesive-Cu pairing is extensively used in electronic device packaging. The DFT calculations predicted that π electrons in a DDM molecule adsorbed onto the Cu surface flowed out onto the Cu surface, resulting in a positive charge on the DDM. TAS measurements for the Cu/epoxy multilayer film, a model sample containing many metal/adhesive interfaces, revealed that the electronic states of excited DDM moieties at the Cu interface were different from those in the bulk region. These results were in good accordance with the prediction by DFT calculations. Thus, it can be concluded that TAS is applicable to characterize the electronic interaction of adhesives with metal adherends in a nondestructive manner.

4.
Pediatr Phys Ther ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38995638

RESUMO

PURPOSE: To determine whether foot and ankle functions are correlated with the limits of stability (LoS) while standing in individuals with bilateral spastic cerebral palsy (BSCP). METHODS: Eighteen people who could walk and with BSCP and 18 people without disability participated. Anteroposterior LoS was measured using a force platform. To quantify ankle and foot functions, spasticity, isometric muscle strength, passive range of motion, and plantar light touch-pressure sensation were assessed. RESULTS: In the BSCP group, anteroposterior LoS was significantly decreased, and anterior LoS reduction was correlated with decreases in plantar flexor and toe flexor strength and in sensitivity of the forefoot to light touch-pressure sensation, whereas the posterior LoS reduction was correlated with reduced dorsiflexor strength. CONCLUSIONS: The present findings suggest that improvement in these foot and ankle functions in BSCP may increase LoS while standing.

5.
Langmuir ; 39(29): 10154-10162, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37342903

RESUMO

Water absorbed by epoxy resins from a humid atmosphere considerably influences their structure and properties. Examining the effects of absorbed water on epoxy resins at their interfaces with solid substrates is crucial because of their adhesive applications in various fields. The spatial distribution of absorbed water in epoxy resin thin films under high humidity was investigated in this study by neutron reflectometry. Water molecules were found to accumulate at the SiO2/epoxy resin interface after exposure at a relative humidity of 85% for 8 h. The formation of an ∼1-nm-thick condensed water layer was observed, and the thickness of this layer varied with curing conditions of epoxy systems. Furthermore, water accumulation at the interface was noted to be affected by high-temperature and high-humidity environments. The formation of the condensed water layer is presumed to be related to the features of the polymer layer near the interface. The construction of the interface layer of epoxy resin would be affected by the interface constraint effect on the cross-linked polymer chain during the curing reaction. This study provides essential information for understanding the factors influencing the accumulation of water at the interface in epoxy resins. In practical applications, the process of improving the construction of epoxy resins near the interface would be a reasonable solution to resist water accumulation in the interface.

6.
J Chem Phys ; 159(17)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37921254

RESUMO

We present a strategic approach for enhancing the ionic conductivity of block copolymer electrolytes. This was achieved by introducing mixed ionic liquids (ILs) with varying molar ratios, wherein the imidazolium cation was paired with either tetrafluoroborate (BF4) anion or bis(trifluoromethylsulfonyl)imide (TFSI) anion. Two polymer matrices, poly(4-styrenesulfonate)-b-polymethylbutylene (SSMB) and poly(4-styrenesulfonyl (trifluoromethanesulfonyl)imide)-b-polymethylbutylene (STMB), were synthesized for this purpose. All the SSMB and STMB containing mixed ILs showed hexagonal cylindrical structures, but the type of tethered acid group significantly influenced the interfacial properties. STMB electrolytes demonstrated enhanced segregation strength, which was attributed to strengthened Coulomb and hydrogen bonding interactions in the ionic domains, where the ILs were uniformly distributed. In contrast, the SSMB electrolytes exhibited increased concentration fluctuations because the BF4 anions were selectively sequestered at the block interfaces. This resulted in the effective confinement of imidazolium TFSI along the ionic domains, thereby preventing ion trapping in dead zones and facilitating rapid ion diffusion. Consequently, the SSMB electrolytes with mixed ILs demonstrated significantly improved ionic conductivities, surpassing the expected values based on the arithmetic average of the conductivities of each IL, whereas the ionic conductivity of the STMB was aligned with the expected average. The methodology explored in this study holds great promise for the development of solid-state polymer electrolytes.

7.
J Chem Phys ; 159(24)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38146829

RESUMO

Polymer chains at a buried interface with an inorganic solid play a critical role in the performance of polymer nanocomposites and adhesives. Sum frequency generation (SFG) vibrational spectroscopy with a sub-nanometer depth resolution provides valuable information regarding the orientation angle of functional groups at interfaces. However, in the case of conventional SFG, since the signal intensity is proportional to the square of the second-order nonlinear optical susceptibility and thereby loses phase information, it cannot be unambiguously determined whether the functional groups face upward or downward. This problem can be solved by phase-sensitive SFG (ps-SFG). We here applied ps-SFG to poly(methyl methacrylate) (PMMA) chains in direct contact with a quartz surface, shedding light on the local conformation of chains adsorbed onto the solid surface. The measurements made it possible to determine the absolute orientation of the ester methyl groups of PMMA, which were oriented toward the quartz interface. Combining ps-SFG with all-atomistic molecular dynamics simulation, the distribution of the local conformation and the driving force are also discussed.

8.
Soft Matter ; 18(17): 3304-3307, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35416198

RESUMO

Adhesion is a molecular event where polymer chains contact with a material surface to form an interfacial layer. To obtain a better understanding of the adhesion on a molecular scale, we herein examined the conformational change of polystyrene (PS) chains at the film surface after contacting with hydrophobic or hydrophilic surfaces using sum-frequency generation (SFG) spectroscopy. Chains altered their local conformations with a quartz surface more quickly than a hydrophobic alkyl-functionalized one. A full-atomistic molecular dynamics simulation showed that these results, which were coupled with the contact process of PS chains with the solid surface, could be explained in terms of the Coulomb interaction between them.

9.
Soft Matter ; 18(10): 1997-2005, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195149

RESUMO

The adsorbed layer on a solid surface plays a crucial role in the dynamics of nanoconfinement polymer materials. However, the influence of the adsorbed layer is complex, and clarifying this influence on the dynamics of confined polymers remains a major challenge. In this paper, SiO2-Si substrates with various thicknesses and adsorbed layers of PS with various molecular weights were used to reveal the effect of the adsorbed layer on the corresponding segmental dynamics of the supported thin PS films. Strongly suppressed segmental dynamics of thin PS films were observed for the films supported on thicker adsorbed layers or prepared using higher molecular weight. Neutron reflectivity revealed that the overlap region thickness between the adsorbed layer and the top overlayer increased with increasing thickness and molecular weight of the adsorbed layer, both of which correlate well with the distance over which the polystyrene dynamics were depressed by the adsorbed layer. The results show that the influencing distance of the adsorbed layer is related to the overlap zone formed between the adsorption layer and the upper thin film. The effect of the adsorbed layer molecular weight can be ascribed to the fact that large loops and long tails in the adsorbed layer result in stronger interpenetrations and entanglements between polymer chains in the adsorbed layer and in the overlayer, causing a stronger substrate effect and suppression of the segment dynamics of the supported thin PS films.

10.
Exp Brain Res ; 240(12): 3315-3325, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36318317

RESUMO

Previous studies have revealed several deficits in anticipatory postural adjustments (APAs) during voluntary movements while standing in individuals with bilateral spastic cerebral palsy (BSCP). However, it remains unclear whether compensatory postural adjustments (CPAs) during movement increase to compensate for APA deficits. We investigated the anticipatory and compensatory activities of postural muscles during voluntary movement while standing in adolescents and young adults with BSCP. The study included seven participants with BSCP with level II on the Gross Motor Function Classification System (GMFCS), seven with BSCP with level III on the GMFCS, and fourteen healthy controls. The participants stood on a force platform and lifted a load under two weight conditions (light and heavy). The electromyographic activities of postural muscles were analyzed at time intervals typical for APAs and CPAs. The percentage of muscle activity in the CPA time epoch against the total muscle activity during the APA and CPA time epochs was higher in the two BSCP groups than in the control group. In the control group, a load-related modulation was observed only in the APA time epoch, whereas in the BSCP-II group, the load-related increase was observed in both the APA and CPA time epochs. No load-related modulations were observed in the BSCP-III group. These findings suggest that adolescents and young adults with BSCP exhibit an increase in the relative contribution of CPAs during voluntary movement and that there exist severity-related differences in the modulation of APAs and CPAs.


Assuntos
Paralisia Cerebral , Equilíbrio Postural , Posição Ortostática , Adolescente , Humanos , Adulto Jovem , Paralisia Cerebral/fisiopatologia , Eletromiografia/métodos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Levantamento de Peso/fisiologia
11.
Phys Chem Chem Phys ; 24(36): 21578-21582, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36093898

RESUMO

A better understanding of the chemical reaction between epoxy and amine compounds at a solid interface is crucial for the design and fabrication of materials with appropriate adhesive strength. Here, we examined the curing reaction kinetics of epoxy phenol novolac and 4,4'-diaminodiphenyl sulfone at the outermost interface using sum-frequency generation spectroscopy, and X-ray and neutron reflectivity in conjunction with a full atomistic molecular dynamics simulation. The reaction rate constant was much larger at the quartz interface than in the bulk. While the apparent activation energy at the quartz interface obtained from an Arrhenius plot was almost identical to the bulk value, the frequency factor at the quartz interface was greater than that in the bulk. These results could be explained in terms of the densification and orientation of reactants at the interface, facilitating the encounter of the reactants present.

12.
Langmuir ; 37(51): 14911-14919, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34902971

RESUMO

The mechanical properties in the outermost region of a polymer film strongly affect various material functions. We here propose a novel and promising strategy for the two-dimensional regulation of the mechanical properties of a polymer film at the water interface based on an inkjet drawing of silica nanoparticles (SNPs) underneath it. A film of poly(2-hydroxyethyl methacrylate) (PHEMA), which exhibits excellent bioinertness properties at the water interface, was well fabricated on a substrate with a pattern of SNPs. X-ray photoelectron spectroscopy and atomic force microscopy confirmed that the surface of the PHEMA film was flat and chemically homogeneous. However, the film surface was in-plane heterogeneous in stiffness due to the presence of the underlying SNP lines. It was also noted that NIH/3T3 fibroblast cells selectively adhered and formed aggregates on the areas under which an SNP line was drawn.


Assuntos
Poli-Hidroxietil Metacrilato , Água , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica
13.
Phys Chem Chem Phys ; 23(41): 23466-23472, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643197

RESUMO

A better understanding of the aggregation states of polymer chains in thin films is of pivotal importance for developing thin film polymer devices in addition to its inherent scientific interest. Here we report the preferential orientation of the crystalline lamellae for isotactic polypropylene (iPP) in spin-coated films by grazing incidence of wide-angle X-ray diffraction in conjunction with sum frequency generation vibrational spectroscopy, which provides information on the local conformation of chains at crystal/amorphous interfaces buried in a thin film. The crystalline orientation of iPP, which formed cross-hatched lamellae induced by lamellar branching, altered from a mixture of edge-on and face-on mother lamellae to preferential face-on mother lamellae with decreasing thickness. The orientation of methyl groups at the crystal/amorphous interfaces in the interior region of the iPP films changed, accompanied by a change in the lamellar orientation.

14.
Langmuir ; 36(13): 3415-3424, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32176499

RESUMO

We investigated in detail the structures in the poly(vinyl alcohol) (PVA) adsorption layers on a Si substrate, which remained on the substrate after immersing the relatively thick 30-50 nm films in hot water, by neutron reflectometry under humid conditions. For the PVA with a degree of saponification exceeding 98 mol %, the adsorption layer exhibits a three-layered structure in the thickness direction. The bottom layer is considered to be the so-called inner adsorption layer that is not fully swollen with water vapor. This may be because the polymer chains in the inner adsorption layer are strongly constrained onto the substrate, which inhibits water vapor penetration. The polymer chains in this layer have many contact points to the substrate via the hydrogen bonding between the hydroxyl groups in the polymer chain and the silanol groups on the surface of the Si substrate and consequently exhibit extremely slow dynamics. Therefore, it is inferred that the bottom layer is fully amorphous. Furthermore, we consider the middle layer to be somewhat amorphous because parts of the molecular chains are pinned below the interface between the middle and bottom layers. The molecular chains in the top layer become more mobile and ordered, owing to the large distance from the strongly constrained bottom layer; therefore, they exhibit a much lower degree of swelling compared to the middle amorphous layer. Meanwhile, for the PVA with a much lower degree of saponification, the adsorption layer structure consists of the two-layers. The bottom layer forms the inner adsorption layer that moderately swells with water vapor because the polymer chains have few contact points to the substrate. The molecular chains in the middle layer, therefore, are somewhat crystallizable because of this weak constraint.

15.
Langmuir ; 36(33): 9960-9966, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32702993

RESUMO

A simple way to control only the surface properties of polymer materials, without changing the bulk properties, has long been desired. The segregation behavior when a component with a tiny amount fed into the matrix is thermodynamically enriched at the surface is one of the candidate methods. This capability was examined herein by focusing on a star-shaped polyhedral oligomeric silsesquioxane (s-POSS), where the central POSS unit is tethered to eight isobutyl-substituted POSS cages as a surface modifier. X-ray photoelectron spectroscopy revealed that the surface of a film of poly(methyl methacrylate) (PMMA) was almost completely covered with POSS units by adding just 5 wt % s-POSS to it. The segregated POSS dramatically altered the physical properties such as molecular motion and the mechanical and dielectric responses at the surface of the PMMA film. These findings make it clear that s-POSS is an excellent surface modifier for glassy polymers.

16.
Macromol Rapid Commun ; 41(21): e2000096, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32459031

RESUMO

Dynamics of polymer chains near an interface with an inorganic material are believed to strongly affect the physical properties of polymers in nanocomposites and thin films. An effect of molecular architecture on the conformational relaxation behavior of polystyrene (PS) chains at the quartz interface using sum-frequency generation spectroscopy is reported here. The relaxation dynamics of chains in direct contact with the quartz interface is slower with a star-shaped architecture than that with its linear counterpart. The extent of the delay becomes more pronounced with increasing number of arms. This can be explained in terms of the superior interfacial activity to the quartz surface for the star-shaped PS.


Assuntos
Polímeros , Poliestirenos , Conformação Molecular , Propriedades de Superfície
17.
Angew Chem Int Ed Engl ; 59(40): 17403-17407, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32627275

RESUMO

Messenger RNAs (mRNAs) with phosphorothioate modification (PS-mRNA) to the phosphate site of A, G, C, and U with all 16 possible combinations were prepared, and the translation reaction was evaluated using an E. coli cell-free translation system. Protein synthesis from PS-mRNA increased in 12 of 15 patterns when compared with that of unmodified mRNA. The protein yield increased 22-fold when the phosphorothioate modification at A/C sites was introduced into the region from the 5'-end to the initiation codon. Single-turnover analysis of PS-mRNA translation showed that phosphorothioate modification increases the number of translating ribosomes, thus suggesting that the rate of translation initiation (rate of ribosome complex formation) is positively affected by the modification. The method provides a new strategy for improving translation by using non-natural mRNA.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro/química , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Escherichia coli/metabolismo , Iniciação Traducional da Cadeia Peptídica , Oligonucleotídeos Fosforotioatos/química , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
18.
Langmuir ; 35(34): 11099-11107, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31365260

RESUMO

We investigated the swelling behaviors of poly(vinyl alcohol) (PVA) films deposited on Si wafers with water vapor, which is a good solvent for PVA for elucidating structural and dynamical heterogeneities in the film thickness direction. Using deuterated water vapor, structural and dynamical differences in the thickness direction can be detected easily as different degrees of swelling in the thickness direction by neutron reflectivity. Consequently, the PVA film with a degree of saponification exceeding 98 mol % exhibits a three-layered structure in the thickness direction. It is considered that an adsorption layer consisting of molecular chains that are strongly adsorbed onto the solid substrate is formed at the interface with the substrate, which is not swollen with water vapor compared with the bulk-like layer above it. The adsorption layer is considered to exhibit significantly slower dynamics than the bulk. Furthermore, a surface layer that swells excessively compared with the underneath bulk-like layer is found. This excess swelling of the surface layer may be related to a higher mobility of the molecular chains or lower crystallinity at the surface region compared to the underneath bulk-like layer. Meanwhile, for the PVA film with a much lower degree of saponification, a thin layer with a slightly lower degree of swelling than the bulk-like layer above it can be detected at the interface between the film and substrate only under a high humidity condition. This layer is considered to be the adsorption layer composed of molecular chains loosely adsorbed onto the Si substrate.

19.
Ann Hepatol ; 18(1): 89-100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31113614

RESUMO

INTRODUCTION AND AIM: We developed a rat model of portal vein ligation (PVL) with venous congestion (PVL+C) to investigate beneficial effect PVL plus congestion for regeneration of intact liver segments. MATERIALS AND METHODS: In the PVL group, portal vein branches were ligated except the caudate lobe (CL). In the PVL + C group, the left lateral hepatic vein was ligated in addition to PVL. Chronological changes in the following variables were compared among the groups: CL weight to body weight ratio (CL/BW), embolized liver weight to body weight ratio (EL/BW), histological findings of the embolized/non-embolized liver, and expression of several mediators that affect liver regeneration in the non-embolized liver. RESULTS: Weight regeneration of CL continued up to postoperative day (POD)7 in PVL + C, but terminated at POD2 in PVL. CL/BW at POD7 was significantly higher in PVL + C than in PVL (2.41 ± 0.33% vs. 1.22 ± 0.18%, P < 0.01). In contrast, EL/BW continued to decrease up to POD7 in PVL + C but reached nadir at POD2 in PVL. Furthermore, EL/BW at POD7 was significantly smaller in PVL + C than in PVL (0.35 ± 0.03% vs. 0.67 ± 0.08%, P < 0.01). Histologically-proven injury in the embolized liver was more severe in PVL + C than in PVL. Expression of Ki-67, IL-6, TNF -a, and HGF were greater and/or more prolonged in PVL + C than in PVL. CONCLUSIONS: Our rat model of PVL + C was considered useful for investigating the beneficial effect of congestion in addition to PVC. PVL + C caused increased devastation of the embolized liver, and higher and more prolonged expression of factors promoting liver regeneration in the non-embolized liver than in PVL.


Assuntos
Hiperemia/patologia , Hepatopatias/cirurgia , Regeneração Hepática/fisiologia , Fígado/irrigação sanguínea , Veia Porta/cirurgia , Animais , Modelos Animais de Doenças , Hiperemia/etiologia , Imuno-Histoquímica , Ligadura , Fígado/patologia , Hepatopatias/patologia , Masculino , Ratos , Ratos Wistar
20.
Langmuir ; 34(37): 11027-11033, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30133287

RESUMO

Dynamic secondary-ion mass spectroscopy (DSIMS) was used to investigate the change in the failure mechanism at a heterogeneous polymer-polymer interface (polystyrene (PS)/polyamide (nylon 6, Ny6)) reinforced with in situ graft copolymers produced by the reaction between Ny6 molecules and poly(styrene- co-maleic anhydride) at the interface. The variation in fracture toughness with bonding time and temperature has been explained by two different failure mechanisms: adhesive failure at the interface for short bonding times and when the bonding temperature is low and cohesive failure between chains at the interface and bulk PS for longer bonding times and when the bonding temperature is high. DSIMS results provide the direct experimental evidence that the nonreactive molecules (PS) diffuse away from the high-potential interface, which induces the cohesive failure in the bulk of the nonreactive molecules (PS) after long annealing times. The change in the adhesion strength with temperature could also cause a change in the failure mechanism. Common features of the fracture mechanisms at heterogeneous interfaces reinforced by the in situ graft copolymers are outlined, which are independent of the polymer crystallinity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA