Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Brain ; 146(8): 3172-3180, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37082980

RESUMO

Multiple system atrophy (MSA) is a neurodegenerative disease characterized by the accumulation of misfolded α-synuclein (αSyn) and myelin disruption. However, the mechanism underlying αSyn accumulation in MSA brains remains unclear. Here, we aimed to identify epsin-2 as a potential regulator of αSyn propagation in MSA brains. In the MSA mouse model, PLP-hαSyn mice, and FABP7/αSyn hetero-aggregate-injected mice, we initially discovered that fatty acid-binding protein 7 (FABP7) is related to MSA development and forms hetero-aggregates with αSyn, which exhibit stronger toxicity than αSyn aggregates. Moreover, the injected FABP7/αSyn hetero-aggregates in mice selectively accumulated only in oligodendrocytes and Purkinje neurons, causing cerebellar dysfunction. Furthermore, bioinformatic analyses of whole blood from MSA patients and FABP7 knockdown mice revealed that epsin-2, a protein expressed in both oligodendrocytes and Purkinje cells, could potentially regulate FABP7/αSyn hetero-aggregate propagation via clathrin-dependent endocytosis. Lastly, adeno-associated virus type 5-dependent epsin-2 knockdown mice exhibited decreased levels of αSyn aggregate accumulation in Purkinje neurons and oligodendrocytes, as well as improved myelin levels and Purkinje neuron function in the cerebellum and motor performance. These findings suggest that epsin-2 plays a significant role in αSyn accumulation in MSA, and we propose epsin-2 as a novel therapeutic target for MSA.


Assuntos
Atrofia de Múltiplos Sistemas , Camundongos , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Camundongos Transgênicos , Oligodendroglia/metabolismo , Encéfalo/metabolismo
2.
Acta Pharmacol Sin ; 45(1): 66-75, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37605049

RESUMO

Multiple system atrophy (MSA) is a rare, fatal neurodegenerative disease characterized by the accumulation of misfolded α-synuclein (αSyn) in glial cells, leading to the formation of glial cytoplasmic inclusions (GCI). We previous found that glial fatty acid-binding protein 7 (FABP7) played a crucial role in alpha-synuclein (αSyn) aggregation and toxicity in oligodendrocytes, inhibition of FABP7 by a specific inhibitor MF 6 reduced αSyn aggregation and enhanced cell viability in cultured cell lines and mouse oligodendrocyte progenitor cells. In this study we investigated whether MF 6 ameliorated αSyn-associated pathological processes in PLP-hαSyn transgenic mice (PLP-αSyn mice), a wildly used MSA mouse model with overexpressing αSyn in oligodendroglia under the proteolipid protein (PLP) promoter. PLP-αSyn mice were orally administered MF6 (0.1, 1 mg ·kg-1 ·d-1) for 32 days starting from the age of 6 months. We showed that oral administration of MF 6 significantly improved motor function assessed in a pole test, and reduced αSyn aggregation levels in both cerebellum and basal ganglia of PLP-αSyn mice. Moreover, MF 6 administration decreased oxidative stress and inflammation levels, and improved myelin levels and Purkinje neuron morphology in the cerebellum. By using mouse brain tissue slices and αSyn aggregates-treated KG-1C cells, we demonstrated that MF 6 reduced αSyn propagation to Purkinje neurons and oligodendrocytes through regulating endocytosis. Overall, these results suggest that MF 6 improves cerebellar functions in MSA by inhibiting αSyn aggregation and propagation. We conclude that MF 6 is a promising compound that warrants further development for the treatment of MSA.


Assuntos
Atrofia de Múltiplos Sistemas , Camundongos , Animais , Atrofia de Múltiplos Sistemas/tratamento farmacológico , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , alfa-Sinucleína/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Camundongos Transgênicos , Oligodendroglia/metabolismo , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças
3.
J Integr Neurosci ; 23(2): 44, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38419457

RESUMO

BACKGROUND: Recently, the hypothesis that pathological α-Synuclein propagates from the gut to the brain has gained attention. Although results from animal studies support this hypothesis, the specific mechanism remains unclear. This study focused on the intestinal fatty acid-binding protein (FABP2), which is one of the subtypes of fatty acid binding proteins localizing in the gut, with the hypothesis that FABP2 is involved in the gut-to-brain propagation of α-synuclein. The aim of this study was to clarify the pathological significance of FABP2 in the pathogenesis and progression of synucleinopathy. METHODS: We examined the relationship between FABP2 and α-Synuclein in the uptake of α-Synuclein into enteric neurons using primary cultured neurons derived from mouse small intestinal myenteric plexus. We also quantified disease-related protein concentrations in the plasma of patients with synucleinopathy and related diseases, and analyzed the relationship between plasma FABP2 level and progression of the disease. RESULTS: Experiments on α-Synuclein uptake in primary cultured enteric neurons showed that following uptake, α-Synuclein was concentrated in areas where FABP2 was localized. Moreover, analysis of the plasma protein levels of patients with Parkinson's disease revealed that the plasma FABP2 and α-Synuclein levels fluctuate with disease duration. The FABP2/α-Synuclein ratio fluctuated more markedly than either FABP2 or α-Synuclein alone, depending on the duration of disease, indicating a higher discriminant ability of early Parkinson's disease patients from healthy patients. CONCLUSIONS: These results suggest that FABP2 potentially contributes to the pathogenesis and progression of α-synucleinopathies. Thus, FABP2 is an important molecule that has the potential to elucidate the consistent mechanisms that lead from the prodromal phase to the onset and subsequent progression of synucleinopathies.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia
4.
J Pharmacol Sci ; 151(2): 128-133, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36707178

RESUMO

The Sigma-1 receptor (Sigmar1) is downregulated in heart failure model mice with mitochondrial dysfunction. However, the mechanism in detail has not been investigated. In this study, we investigated the role of Sigmar1 in ER-mitochondria proximity using Sigmar1-knockdown or -overexpressed neonatal rat ventricular myocytes (NRVMs). The endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy was aggravated with the dysregulation of mitochondrial function and ER-mitochondrial junctional formation in Sigmar1-knockdown NRVMs, whereas improved in Sigmar1 overexpressed NRVMs. Our data suggests that the reduction of the cardiac Sigmar1 results in decrease mitochondrial Ca2+ influx and promotes mitochondrial fission, followed by reduced ER-mitochondria proximity, exacerbating ET-1-induced cardiomyocyte injury.


Assuntos
Insuficiência Cardíaca , Receptores sigma , Animais , Camundongos , Ratos , Homeostase/genética , Mitocôndrias , Miócitos Cardíacos/metabolismo , Receptores sigma/genética , Receptores sigma/metabolismo , Retículo Endoplasmático/metabolismo , Cálcio/metabolismo , Receptor Sigma-1
5.
J Pharmacol Sci ; 152(1): 30-38, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059489

RESUMO

Parkinson's disease (PD) is characterized by dopaminergic (DAergic) neuronal loss in the substantia nigra pars compacta (SNpc), resulting from α-synuclein (αSyn) toxicity. We previously reported that αSyn oligomerization and toxicity are regulated by the fatty-acid binding protein 3 (FABP3), and the therapeutic effects of the FABP3 ligand, MF1, was successfully demonstrated in PD models. Here, we developed a novel and potent ligand, HY-11-9, which has a higher affinity for FABP3 (Kd = 11.7 ± 8.8) than MF1 (Kd = 302.8 ± 130.3). We also investigated whether the FABP3 ligand can ameliorate neuropathological deterioration after the onset of disease in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. Motor deficits were observed two weeks after MPTP treatment. Notably, oral administration of HY-11-9 (0.03 mg/kg) improved motor deficits in both beam-walking and rotarod tasks, whereas MF1 failed to improve the motor deficits in both tasks. Consistent with the behavioral tasks, HY-11-9 recovered dopamine neurons from MPTP toxicity in the substantia nigra and ventral tegmental areas. Furthermore, HY-11-9 reduced the accumulation of phosphorylated-serine129-α-synuclein (pS129-αSyn) and colocalization with FABP3 in tyrosine hydroxylase (TH)-positive DA neurons in the PD mouse model. Overall, HY-11-9 significantly improved MPTP-induced behavioral and neuropathological deterioration, suggesting that it may be a potential candidate for PD therapy.


Assuntos
Intoxicação por MPTP , Doença de Parkinson , Transtornos Parkinsonianos , Camundongos , Animais , alfa-Sinucleína/metabolismo , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Ligantes , Transtornos Parkinsonianos/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Substância Negra/metabolismo , Substância Negra/patologia , Neurônios Dopaminérgicos/metabolismo , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Modelos Animais de Doenças , Proteína 3 Ligante de Ácido Graxo/metabolismo
6.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982647

RESUMO

Global aging has led to an increase in age-related neurological disorders, which have become a societal problem [...].


Assuntos
Doenças Neurodegenerativas , Humanos , Proteínas Quinases , Envelhecimento
7.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069360

RESUMO

Parkinson's disease is a neurodegenerative condition characterized by motor dysfunction resulting from the degeneration of dopamine-producing neurons in the midbrain. This dopamine deficiency gives rise to a spectrum of movement-related symptoms, including tremors, rigidity, and bradykinesia. While the precise etiology of Parkinson's disease remains elusive, genetic mutations, protein aggregation, inflammatory processes, and oxidative stress are believed to contribute to its development. In this context, fatty acid-binding proteins (FABPs) in the central nervous system, FABP3, FABP5, and FABP7, impact α-synuclein aggregation, neurotoxicity, and neuroinflammation. These FABPs accumulate in mitochondria during neurodegeneration, disrupting their membrane potential and homeostasis. In particular, FABP3, abundant in nigrostriatal dopaminergic neurons, is responsible for α-synuclein propagation into neurons and intracellular accumulation, affecting the loss of mesencephalic tyrosine hydroxylase protein, a rate-limiting enzyme of dopamine biosynthesis. This review summarizes the characteristics of FABP family proteins and delves into the pathogenic significance of FABPs in the pathogenesis of Parkinson's disease. Furthermore, it examines potential novel therapeutic targets and early diagnostic biomarkers for Parkinson's disease and related neurodegenerative disorders.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/metabolismo , Dopamina/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios Dopaminérgicos/metabolismo
8.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37047614

RESUMO

We previously demonstrated that fatty acid-binding protein 3 null (FABP3-/-) mice exhibit resistance to nicotine-induced conditioned place preference (CPP). Here, we confirm that the FABP3 inhibitor, MF1 ((4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy) butanoic acid), successfully reduces nicotine-induced CPP scores in mice. MF1 (0.3 or 1.0 mg/kg) was orally administered 30 min before nicotine, and CPP scores were assessed in the conditioning, withdrawal, and relapse phases. MF1 treatment decreased CPP scores in a dose-dependent manner. Failure of CPP induction by MF1 (1.0 mg/kg, p.o.) was associated with the inhibition of both CaMKII and ERK activation in the nucleus accumbens (NAc) and hippocampal CA1 regions. MF1 treatment reduced nicotine-induced increases in phosphorylated CaMKII and cAMP-response element-binding protein (CREB)-positive cells. Importantly, the increase in dopamine D2 receptor (D2R) levels following chronic nicotine exposure was inhibited by MF1 treatment. Moreover, the quinpirole (QNP)-induced increase in the level of CaMKII and ERK phosphorylation was significantly inhibited by MF1 treatment of cultured NAc slices from wild type (WT) mice; however, QNP treatment had no effect on CaMKII and ERK phosphorylation levels in the NAc of D2R null mice. Taken together, these results show that MF1 treatment suppressed D2R/FABP3 signaling, thereby preventing nicotine-induced CPP induction. Hence, MF1 can be used as a novel drug to block addiction to nicotine and other drugs by inhibiting the dopaminergic system.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Nicotina , Camundongos , Animais , Nicotina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Núcleo Accumbens/metabolismo , Transdução de Sinais , Camundongos Knockout , Proteína 3 Ligante de Ácido Graxo/metabolismo
9.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686075

RESUMO

An increase in the global aging population is leading to an increase in age-related conditions such as dementia and movement disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). The accurate prediction of risk factors associated with these disorders is crucial for early diagnosis and prevention. Biomarkers play a significant role in diagnosing and monitoring diseases. In neurodegenerative disorders like α-synucleinopathies, specific biomarkers can indicate the presence and progression of disease. We previously demonstrated the pathogenic impact of fatty acid-binding proteins (FABPs) in α-synucleinopathies. Therefore, this study investigated FABPs as potential biomarkers for Lewy body diseases. Plasma FABP levels were measured in patients with AD, PD, DLB, and mild cognitive impairment (MCI) and healthy controls. Plasma FABP3 was increased in all groups, while the levels of FABP5 and FABP7 tended to decrease in the AD group. Additionally, FABP2 levels were elevated in PD. A correlation analysis showed that higher FABP3 levels were associated with decreased cognitive function. The plasma concentrations of Tau, GFAP, NF-L, and UCHL1 correlated with cognitive decline. A scoring method was applied to discriminate between diseases, demonstrating high accuracy in distinguishing MCI vs. CN, AD vs. DLB, PD vs. DLB, and AD vs. PD. The study suggests that FABPs could serve as potential biomarkers for Lewy body diseases and aid in early disease detection and differentiation.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Parkinson , Sinucleinopatias , Humanos , Idoso , Doença de Parkinson/diagnóstico , Corpos de Lewy , Doença por Corpos de Lewy/diagnóstico , Proteínas de Ligação a Ácido Graxo , Doença de Alzheimer/diagnóstico , Biomarcadores
10.
J Biol Chem ; 296: 100663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33862084

RESUMO

α-synuclein (αSyn) is a protein known to form intracellular aggregates during the manifestation of Parkinson's disease. Previously, it was shown that αSyn aggregation was strongly suppressed in the midbrain region of mice that did not possess the gene encoding the lipid transport protein fatty acid binding protein 3 (FABP3). An interaction between these two proteins was detected in vitro, suggesting that FABP3 may play a role in the aggregation and deposition of αSyn in neurons. To characterize the molecular mechanisms that underlie the interactions between FABP3 and αSyn that modulate the cellular accumulation of the latter, in this report, we used in vitro fluorescence assays combined with fluorescence microscopy, transmission electron microscopy, and quartz crystal microbalance assays to characterize in detail the process and consequences of FABP3-αSyn interaction. We demonstrated that binding of FABP3 to αSyn results in changes in the aggregation mechanism of the latter; specifically, a suppression of fibrillar forms of αSyn and also the production of aggregates with an enhanced cytotoxicity toward mice neuro2A cells. Because this interaction involved the C-terminal sequence region of αSyn, we tested a peptide derived from this region of αSyn (αSynP130-140) as a decoy to prevent the FABP3-αSyn interaction. We observed that the peptide competitively inhibited binding of αSyn to FABP3 in vitro and in cultured cells. We propose that administration of αSynP130-140 might be used to prevent the accumulation of toxic FABP3-αSyn oligomers in cells, thereby preventing the progression of Parkinson's disease.


Assuntos
Amiloide/antagonistas & inibidores , Proteína 3 Ligante de Ácido Graxo/metabolismo , Neuroblastoma/patologia , Fragmentos de Peptídeos/farmacologia , Agregação Patológica de Proteínas/prevenção & controle , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Animais , Proteína 3 Ligante de Ácido Graxo/genética , Humanos , Camundongos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Células Tumorais Cultivadas , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/genética
11.
J Pharmacol Sci ; 148(2): 248-254, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35063140

RESUMO

An aging society leads to an increased number of patients with cognitive and movement disorders, such as Parkinson's disease and dementia with Lewy bodies. α-Synuclein accumulation in neuronal cells is a pathological hallmark of α-synucleinopathies. Aberrant soluble oligomeric units of α-synuclein are toxic and disrupt neuronal homeostasis. Fatty acids partially regulate α-synuclein accumulation as well as oligomerization, and fatty acid-binding protein (FABP) associates with the α-synuclein aggregates. Heart-type FABP (hFABP, FABP3) is rich in dopaminergic neurons and interacts with dopamine D2 receptors, specifically the long type (D2L), which is abundant in caveolae. We recently demonstrated that mesencephalic neurons require FABP3 and dopamine D2L receptors for the caveolae-mediated α-synuclein uptake. Accumulated α-synuclein gets fibrillized and tightly co-localizes with FABP3 and dopamine D2L receptors, which leads to mitochondrial dysfunction and loss of tyrosine hydroxylase, a rate-limiting enzyme in dopamine production. Furthermore, the inhibition of FABP3 using small-molecule ligands successfully prevents FABP3-induced neurotoxicity. In this review, we focus on the impact of FABP3, dopamine receptors, and other FABP family proteins in the process of α-synuclein propagation and the subsequent aggregate-induced cytotoxicity. We also propose the potential of FABP as a therapeutic target for α-synucleinopathies.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Receptores Dopaminérgicos/metabolismo , Sinucleinopatias/etiologia , Sinucleinopatias/metabolismo , alfa-Sinucleína/metabolismo , Dopamina/metabolismo , Proteína 3 Ligante de Ácido Graxo/metabolismo , Humanos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Agregados Proteicos , Sinucleinopatias/terapia , alfa-Sinucleína/toxicidade
12.
Acta Pharmacol Sin ; 43(3): 552-562, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33935286

RESUMO

We previously show that fatty acid-binding protein 3 (FABP3) triggers α-synuclein (Syn) accumulation and induces dopamine neuronal cell death in Parkinson disease mouse model. But the role of fatty acid-binding protein 7 (FABP7) in the brain remains unclear. In this study we investigated whether FABP7 was involved in synucleinopathies. We showed that FABP7 was co-localized and formed a complex with Syn in Syn-transfected U251 human glioblastoma cells, and treatment with arachidonic acid (100 M) significantly promoted FABP7-induced Syn aggregation, which was associated with cell death. We demonstrated that synthetic FABP7 ligand 6 displayed a high affinity against FABP7 with Kd value of 209 nM assessed in 8-anilinonaphthalene-1-sulfonic acid (ANS) assay; ligand 6 improved U251 cell survival via disrupting the FABP7-Syn interaction. We showed that activation of phospholipase A2 (PLA2) by psychosine (10 M) triggered oligomerization of endogenous Syn and FABP7, and induced cell death in both KG-1C human oligodendroglia cells and oligodendrocyte precursor cells (OPCs). FABP7 ligand 6 (1 M) significantly decreased Syn oligomerization and aggregation thereby prevented KG-1C and OPC cell death. This study demonstrates that FABP7 triggers α-synuclein oligomerization through oxidative stress, while FABP7 ligand 6 can inhibit FABP7-induced Syn oligomerization and aggregation, thereby rescuing glial cells and oligodendrocytes from cell death.


Assuntos
Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Estresse Oxidativo/fisiologia , alfa-Sinucleína/metabolismo , Animais , Ácido Araquidônico/farmacologia , Morte Celular/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Fosfolipases A2/efeitos dos fármacos , Ligação Proteica/fisiologia , Psicosina/farmacologia
13.
Int J Mol Sci ; 23(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35682892

RESUMO

α-Synuclein is a protein with a molecular weight of 14.5 kDa and consists of 140 amino acids encoded by the SNCA gene. Missense mutations and gene duplications in the SNCA gene cause hereditary Parkinson's disease. Highly phosphorylated and abnormally aggregated α-synuclein is a major component of Lewy bodies found in neuronal cells of patients with sporadic Parkinson's disease, dementia with Lewy bodies, and glial cytoplasmic inclusion bodies in oligodendrocytes with multiple system atrophy. Aggregated α-synuclein is cytotoxic and plays a central role in the pathogenesis of the above-mentioned synucleinopathies. In a healthy brain, most α-synuclein is unphosphorylated; however, more than 90% of abnormally aggregated α-synuclein in Lewy bodies of patients with Parkinson's disease is phosphorylated at Ser129, which is presumed to be of pathological significance. Several kinases catalyze Ser129 phosphorylation, but the role of phosphorylation enzymes in disease pathogenesis and their relationship to cellular toxicity from phosphorylation are not fully understood in α-synucleinopathy. Consequently, this review focuses on the pathogenic impact of α-synuclein phosphorylation and its kinases during the neurodegeneration process in α-synucleinopathy.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo , Fosforilação/fisiologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077044

RESUMO

Stroke is among the leading causes of death and disability worldwide. However, despite long-term research yielding numerous candidate neuroprotective drugs, there remains a lack of effective neuroprotective therapies for ischemic stroke patients. Among the factors contributing to this deficiency could be that single-target therapy is insufficient in addressing the complex and extensive mechanistic basis of ischemic brain injury. In this context, lipids serve as an essential component of multiple biological processes and play important roles in the pathogenesis of numerous common neurological diseases. Moreover, in recent years, fatty acid-binding proteins (FABPs), a family of lipid chaperone proteins, have been discovered to be involved in the onset or development of several neurodegenerative diseases, including Alzheimer's and Parkinson's disease. However, comparatively little attention has focused on the roles played by FABPs in ischemic stroke. We have recently demonstrated that neural tissue-associated FABPs are involved in the pathological mechanism of ischemic brain injury in mice. Here, we review the literature published in the past decade that has reported on the associations between FABPs and ischemia and summarize the relevant regulatory mechanisms of FABPs implicated in ischemic injury. We also propose candidate FABPs that could serve as potential therapeutic targets for ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , AVC Isquêmico/tratamento farmacológico , Camundongos , Acidente Vascular Cerebral/metabolismo
15.
J Pharmacol Sci ; 146(1): 1-9, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33858649

RESUMO

Alzheimer's disease (AD) accounts for the majority of dementia among the elderly. In addition to cognitive impairment, behavioral and psychological symptoms (BPSD) such as depression tendency and increased aggression impose a great burden on the patient. However, there is still no rational therapeutic drug for BPSD. Recently, we developed a novel AD therapeutic candidate, SAK3, and demonstrated that it improved cognitive dysfunction in AppNL-G-F/NL-G-F knock-in (NL-G-F) mice. In this study, we investigated whether acute SAK3 administration improved BPSD in addition to cognitive improvement. Acute SAK3 administration improved BPSD, including anxiolytic and depressive-like behaviors, and ameliorated aggressive behaviors. Furthermore, continuous SAK3 administration improved anxiolytic and depressive-like behaviors. Intriguingly, the anti-anxiolytic and cognitive improvement lasted two weeks after the withdrawal of SAK3, whereas the anti-depressive action did not. Taken together, SAK3 had comprehensive beneficial effects on BPSD behavior.


Assuntos
Doença de Alzheimer/complicações , Comportamento Animal/efeitos dos fármacos , Canais de Cálcio Tipo T/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/etiologia , Compostos de Espiro/administração & dosagem , Compostos de Espiro/farmacologia , Animais , Ansiolíticos , Antidepressivos , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Masculino , Camundongos Endogâmicos C57BL
16.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804804

RESUMO

Nicotine is the predominant addictive compound of tobacco and causes the acquisition of dependence through its interactions with nicotinic acetylcholine receptors and various neurotransmitter releases in the central nervous system. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) play a pivotal role in synaptic plasticity in the hippocampus. CaMKII is involved in long-term potentiation induction, which underlies the consolidation of learning and memory; however, the roles of CaMKII in nicotine and other psychostimulant-induced addiction still require further investigation. This article reviews the molecular mechanisms and crucial roles of CaMKII and ERK in nicotine and other stimulant drug-induced addiction. We also discuss dopamine (DA) receptor signaling involved in nicotine-induced addiction in the brain reward circuitry. In the last section, we introduce the association of polyunsaturated fatty acids and cellular chaperones of fatty acid-binding protein 3 in the context of nicotine-induced addiction in the mouse nucleus accumbens and provide a novel target for the treatment of drug abuse affecting dopaminergic systems.


Assuntos
Transdução de Sinais , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Suscetibilidade a Doenças , Dopamina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína 3 Ligante de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Humanos , Nicotina/efeitos adversos , Nicotina/metabolismo , Transtornos Relacionados ao Uso de Substâncias/etiologia , Transtornos Relacionados ao Uso de Substâncias/metabolismo
17.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201181

RESUMO

Lewy bodies are pathological characteristics of Lewy body dementia (LBD) and are composed of α-synuclein (α-Syn), which is mostly degraded via the ubiquitin-proteasome system. More importantly, 26S proteasomal activity decreases in the brain of LBD patients. We recently introduced a T-type calcium channel enhancer SAK3 (ethyl-8-methyl-2,4-dioxo-2-(piperidin-1-yl)- 2H-spiro[cyclopentane-1,3-imidazo [1,2-a]pyridin]-2-ene-3-carboxylate) for Alzheimer's disease therapeutics. SAK3 enhanced the proteasome activity via CaMKII activation in amyloid precursor protein knock-in mice, promoting the degradation of amyloid-ß plaques to improve cognition. At this point, we addressed whether SAK3 promotes the degradation of misfolded α-Syn and the aggregates in α-Syn preformed fibril (PFF)-injected mice. The mice were injected with α-Syn PFF in the dorsal striatum, and SAK3 (0.5 or 1.0 mg/kg) was administered orally for three months, either immediately or during the last month after injection. SAK3 significantly inhibited the accumulation of fibrilized phosphorylated-α-Syn in the substantia nigra. Accordingly, SAK3 significantly recovered mesencephalic dopamine neurons from cell death. Decreased α-Syn accumulation was closely associated with increased proteasome activity. Elevated CaMKII/Rpt-6 signaling possibly mediates the enhanced proteasome activity after SAK3 administration in the cortex and hippocampus. CaMKII/Rpt-6 activation also accounted for improved memory and cognition in α-Syn PFF-injected mice. These findings indicate that CaMKII/Rpt-6-dependent proteasomal activation by SAK3 recovers from α-Syn pathology in LBD.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Imidazóis/farmacologia , Doença por Corpos de Lewy/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Compostos de Espiro/farmacologia , Animais , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451040

RESUMO

Alzheimer's disease (AD), characterized by cognitive impairments, is considered to be one of the most widespread chronic neurodegenerative diseases worldwide. We recently introduced a novel therapeutic agent for AD treatment, the T-type calcium channel enhancer ethyl-8-methyl-2,4-dioxo-2-(piperidin-1-yl)-2H-spiro[cyclopentane-1,3-imidazo[1,2-a]pyridin]-2-ene-3-carboxylate (SAK3). SAK3 enhances calcium/calmodulin-dependent protein kinase II and proteasome activity, thereby promoting amyloid beta degradation in mice with AD. However, the antioxidative effects of SAK3 remain unclear. We investigated the antioxidative effects of SAK3 in olfactory bulbectomized mice (OBX mice), compared with the effects of donepezil as a positive control. As previously reported, single oral administration of both SAK3 (0.5 mg/kg, p.o.) and donepezil (1.0 mg/kg, p.o.) significantly improved cognitive and depressive behaviors in OBX mice. Single oral SAK3 administration markedly reduced 4-hydroxy-2-nonenal and nitrotyrosine protein levels in the hippocampus of OBX mice, which persisted until 1 week after administration. These effects are similar to those observed with donepezil therapy. Increased protein levels of oxidative stress markers were observed in the microglial cells, which were significantly rescued by SAK3 and donepezil. SAK3 could ameliorate oxidative stress in OBX mice, like donepezil, suggesting that the antioxidative effects of SAK3 and donepezil are among the neuroprotective mechanisms in AD pathogenesis.


Assuntos
Agonistas dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Cognição/efeitos dos fármacos , Imidazóis/farmacologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Compostos de Espiro/farmacologia , Administração Oral , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Agonistas dos Canais de Cálcio/administração & dosagem , Agonistas dos Canais de Cálcio/química , Modelos Animais de Doenças , Esquema de Medicação , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Estrutura Molecular , Bulbo Olfatório/cirurgia , Memória Espacial/efeitos dos fármacos , Tirosina/análogos & derivados , Tirosina/metabolismo
19.
FASEB J ; 33(9): 10240-10256, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31211923

RESUMO

The neuropathological hallmarks of Parkinson's disease (PD) include the appearance of α-synuclein (α-SYN)-positive Lewy bodies (LBs) and the loss of catecholaminergic neurons. Thus, a potential mechanism promoting the uptake of extracellular α-SYN may exist in susceptible neurons. Of the various differentially expressed proteins, we are interested in flotillin (FLOT)-1 because this protein is highly expressed in the brainstem catecholaminergic neurons and is strikingly up-regulated in PD brains. In this study, we found that extracellular monomeric and fibrillar α-SYN can potentiate FLOT1-dopamine transporter (DAT) binding and pre-endocytic clustering of DAT on the cell surface, thereby facilitating DAT endocytosis and down-regulating its transporter activity. Moreover, we demonstrated that α-SYN itself exploited the DAT endocytic process to enter dopaminergic neuron-like cells, and both FLOT1 and DAT were found to be the components of LBs. Altogether, these findings revealed a novel role of extracellular α-SYN on cellular trafficking of DAT and may provide a rationale for the cell type-specific, functional, and pathologic alterations in PD.-Kobayashi, J., Hasegawa, T., Sugeno, N., Yoshida, S., Akiyama, T., Fujimori, K., Hatakeyama, H., Miki, Y., Tomiyama, A., Kawata, Y., Fukuda, M., Kawahata, I., Yamakuni, T., Ezura, M., Kikuchi, A., Baba, T., Takeda, A., Kanzaki, M., Wakabayashi, K., Okano, H., Aoki, M. Extracellular α-synuclein enters dopaminergic cells by modulating flotillin-1-assisted dopamine transporter endocytosis.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Corpos de Lewy/patologia , Proteínas de Membrana/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Membrana Celular/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Neurônios Dopaminérgicos/metabolismo , Endocitose , Humanos , Corpos de Lewy/metabolismo , Proteínas de Membrana/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transporte Proteico , alfa-Sinucleína/genética
20.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471089

RESUMO

Nigrostriatal dopaminergic systems govern physiological functions related to locomotion, and their dysfunction leads to movement disorders, such as Parkinson's disease and dopa-responsive dystonia (Segawa disease). Previous studies revealed that expression of the gene encoding nigrostriatal tyrosine hydroxylase (TH), a rate-limiting enzyme of dopamine biosynthesis, is reduced in Parkinson's disease and dopa-responsive dystonia; however, the mechanism of TH depletion in these disorders remains unclear. In this article, we review the molecular mechanism underlying the neurodegeneration process in dopamine-containing neurons and focus on the novel degradation pathway of TH through the ubiquitin-proteasome system to advance our understanding of the etiology of Parkinson's disease and dopa-responsive dystonia. We also introduce the relation of α-synuclein propagation with the loss of TH protein in Parkinson's disease as well as anticipate therapeutic targets and early diagnosis of these diseases.


Assuntos
Distúrbios Distônicos/enzimologia , Doença de Parkinson/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Tirosina 3-Mono-Oxigenase/metabolismo , Ubiquitina/metabolismo , Animais , Distúrbios Distônicos/patologia , Distúrbios Distônicos/terapia , Humanos , Doença de Parkinson/patologia , Doença de Parkinson/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA