Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054866

RESUMO

The development of bioscaffolds for cardiovascular medical applications, such as peripheral artery disease (PAD), remains to be a challenge for tissue engineering. PAD is an increasingly common and serious cardiovascular illness characterized by progressive atherosclerotic stenosis, resulting in decreased blood perfusion to the lower extremities. Percutaneous transluminal angioplasty and stent placement are routinely performed on these patients with suboptimal outcomes. Natural Vascular Scaffolding (NVS) is a novel treatment in the development for PAD, which offers an alternative to stenting by building on the natural structural constituents in the extracellular matrix (ECM) of the blood vessel wall. During NVS treatment, blood vessels are exposed to a photoactivatable small molecule (10-8-10 Dimer) delivered locally to the vessel wall via an angioplasty balloon. When activated with 450 nm wavelength light, this therapy induces the formation of covalent protein-protein crosslinks of the ECM proteins by a photochemical mechanism, creating a natural scaffold. This therapy has the potential to reduce the need for stent placement by maintaining a larger diameter post-angioplasty and minimizing elastic recoil. Experiments were conducted to elucidate the mechanism of action of NVS, including the molecular mechanism of light activation and the impact of NVS on the ECM.


Assuntos
Prótese Vascular , Matriz Extracelular/efeitos da radiação , Alicerces Teciduais/química , Angioplastia com Balão , Animais , Artérias/fisiologia , Fenômenos Biomecânicos , Reagentes de Ligações Cruzadas/química , Dimerização , Hipercolesterolemia/diagnóstico por imagem , Hipercolesterolemia/fisiopatologia , Hipercolesterolemia/terapia , Luz , Peptídeos/química , Suínos
2.
Org Biomol Chem ; 17(48): 10237-10244, 2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31793605

RESUMO

The application of solid-phase peptide synthesis and native chemical ligation in chemical protein synthesis (CPS) has enabled access to synthetic proteins that cannot be produced recombinantly, such as site-specific post-translationally modified or mirror-image proteins (D-proteins). However, CPS is commonly hampered by aggregation and insolubility of peptide segments and assembly intermediates. Installation of a solubilizing tag consisting of basic Lys or Arg amino acids can overcome these issues. Through the introduction of a traceless cleavable linker, the solubilizing tag can be selectively removed to generate native peptide. Here we describe the synthesis of a next-generation amine-reactive linker N-Fmoc-2-(7-amino-1-hydroxyheptylidene)-5,5-dimethylcyclohexane-1,3-dione (Fmoc-Ddap-OH) that can be used to selectively introduce semi-permanent solubilizing tags ("helping hands") onto Lys side chains of difficult peptides. This linker has improved stability compared to its predecessor, a property that can increase yields for multi-step syntheses with longer handling times. We also introduce a new linker cleavage protocol using hydroxylamine that greatly accelerates removal of the linker. The utility of this linker in CPS was demonstrated by the preparation of the synthetically challenging Shiga toxin subunit B (StxB) protein. This robust and easy-to-use linker is a valuable addition to the CPS toolbox for the production of challenging synthetic proteins.


Assuntos
Peptídeos/química , Subunidades Proteicas/síntese química , Toxina Shiga/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Sequência de Aminoácidos , Arginina/química , Cicloexanonas/química , Hidroxilamina/química , Lisina/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA