Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dev Dyn ; 251(12): 1934-1951, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35996230

RESUMO

BACKGROUND: The cadherin-associated protein p120 catenin regulates convergent extension through interactions with cadherin proteins, Cdc42, and Rac1, as we previously showed in zebrafish (Danio rerio). Phosphorylation of p120 catenin changes the nature of its activity in vitro but is virtually unexplored in embryos. We used our previously developed antisense RNA splice-site morpholino targeted to endogenous p120 catenin-δ1 to cause defects in axis elongation probing the functions of three p120 catenin tyrosine-phosphorylation sites in gastrulating zebrafish embryos. RESULTS: The morpholino-induced defects were rescued by co-injections with mouse p120 catenin-δ1-3A mRNAs mutated at residues Y228 and Y217 to a non-phosphorylatable phenylalanine (F) or mutated at residue Y335 to a phosphomimetic glutamic acid (E). Co-injection of the complementary mutations Y228E, Y217E, or Y335F mRNAs partially rescued embryos whereas dual mutation to Y228E-Y217E blocked rescue. Immunopurification showed Y228F mutant proteins preferentially interacted with Rac1, potentially promoting cell migration. In contrast, the phosphomimetic Y228E preferentially interacted with E-cadherin increasing adhesion. Both Y228F and Y335F strongly bind VAV2. CONCLUSIONS: p120 catenin serves dual roles during gastrulation of zebrafish. Phosphorylation and dephosphorylation of tyrosine residues Y217, Y228, and Y335 precisely balance cell adhesion and cell migration to facilitate somite compaction and axis elongation.


Assuntos
Gastrulação , Peixe-Zebra , Camundongos , Animais , Peixe-Zebra/metabolismo , Fosforilação , Morfolinos/metabolismo , Cateninas/genética , Cateninas/metabolismo , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/fisiologia , Tirosina/genética , Tirosina/metabolismo , Fosfoproteínas/metabolismo , beta Catenina/metabolismo
2.
iScience ; 25(10): 105072, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36147950

RESUMO

In the axon terminal, microtubule stability is decreased relative to the axon shaft. The dynamic microtubule plus ends found in the axon terminal have many functions, including serving as a docking site for the Cytoplasmic dynein motor. Here, we report an unexplored function of dynein in microtubule regulation in axon terminals: regulation of microtubule stability. Using a forward genetic screen, we identified a mutant with an abnormal axon terminal structure owing to a loss of function mutation in NudC. We show that, in the axon terminal, NudC is a chaperone for the protein Lis1. Decreased Lis1 in nudc axon terminals causes dynein/dynactin accumulation and increased microtubule stability. Microtubule dynamics can be restored by pharmacologically inhibiting dynein, implicating excess dynein motor function in microtubule stabilization. Together, our data support a model in which local NudC-Lis1 modulation of the dynein motor is critical for the regulation of microtubule stability in the axon terminal.

3.
Biol Bull ; 241(1): 77-91, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34436965

RESUMO

AbstractIn recent years, low-salinity events characterized by high temperatures (18-23 °C) and low-salinity waters (20‰-22‰) have increased during late spring and summer, when many marine invertebrate larvae are developing. The present study examines the effects of low-salinity events on particle ingestion for larvae of two echinoderm species, the sea star Pisaster ochraceus and the sand dollar Dendraster excentricus. Larvae were exposed to high temperatures and low salinities for 24 hours, followed by feeding on the alga Isochrysis galbana in high or low salinity for another 10 minutes. Exposing Pisaster larvae to high temperatures and low salinities, followed by feeding in low salinity, did not impair ingestion rates. In fact, these larvae ingested particles at similar and sometimes higher rates than those in the controls. In sharp contrast, a 24-hour exposure to a high temperature and low salinity, followed by continued exposure to low salinity to feed, led to a decrease in the number of particles ingested by 8-arm Dendraster larvae. Larvae of both species captured very few particles when returned to 30‰ after a low-salinity event, indicating that continuous interruption of larval feeding by low-salinity events during development could be deleterious. Sand dollar larvae may have responded negatively to low-salinity events in our experiments because they are found in protected bays, where they may seldom experience these events.


Assuntos
Salinidade , Ouriços-do-Mar , Animais , Larva , Estrelas-do-Mar , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA