Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(21): 216201, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856292

RESUMO

Intriguingly, conducting perovskite interfaces between ordinary band insulators are widely explored, whereas similar interfaces with Mott insulators are still not quite understood. Here, we address the (001), (110), and (111) interfaces between the LaTiO_{3} Mott, and large band gap KTaO_{3} insulators. Based on first-principles calculations, we reveal a mechanism of interfacial conductivity, which is distinct from a formerly studied one applicable to interfaces between polar wideband insulators. Here, the key factor causing conductivity is the matching of oxygen octahedra tilting in KTaO_{3} and LaTiO_{3} which, due to a small gap in the LaTiO_{3} results in its sensitivity to the crystal structure, yields metallization of its overlayer and following charge transfer from Ti to Ta. Our findings, also applicable to other Mott insulators interfaces, shed light on the emergence of conductivity observed in LaTiO_{3}/KTaO_{3} (110) where the "polar" arguments are not applicable and on the emergence of superconductivity in these structures.

2.
Nat Mater ; 21(3): 311-316, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34949813

RESUMO

The competition between kinetic energy and Coulomb interactions in electronic systems leads to complex many-body ground states with competing orders. Here we present zinc oxide-based two-dimensional electron systems as a high-mobility system to study the low-temperature phases of strongly interacting electrons. An analysis of the electronic transport provides evidence for competing correlated metallic and insulating states with varying degrees of spin polarization. Some features bear quantitative resemblance to quantum Monte Carlo simulation results, including the transition point from the paramagnetic Fermi liquid to Wigner crystal and the absence of a Stoner transition. At very low temperatures, we resolve a non-monotonic spin polarizability of electrons across the phase transition, pointing towards a low spin phase of electrons, and a two-order-of-magnitude positive magnetoresistance that is challenging to understand within traditional metallic transport paradigms. This work establishes zinc oxide as a platform for studying strongly correlated electrons in two dimensions.

3.
Proc Natl Acad Sci U S A ; 116(6): 1929-1933, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30670652

RESUMO

Photoexcitation in solids brings about transitions of electrons/holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the geometric phase of the constituting electronic bands: the Berry connection. This photocurrent, termed shift current, is expected to emerge on the timescale of primary photoexcitation process. We observe ultrafast evolution of the shift current in a prototypical ferroelectric semiconductor antimony sulfur iodide (SbSI) by detecting emitted terahertz electromagnetic waves. By sweeping the excitation photon energy across the bandgap, ultrafast electron dynamics as a source of terahertz emission abruptly changes its nature, reflecting a contribution of Berry connection on interband optical transition. The shift excitation carries a net charge flow and is followed by a swing over of the electron cloud on a subpicosecond timescale. Understanding these substantive characters of the shift current with the help of first-principles calculation will pave the way for its application to ultrafast sensors and solar cells.

4.
Phys Rev Lett ; 125(13): 137202, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33034489

RESUMO

In the three-dimensional (3D) Heisenberg model, topological point defects known as spin hedgehogs behave as emergent magnetic monopoles, i.e., quantized sources and sinks of gauge fields that couple strongly to conduction electrons, and cause unconventional transport responses such as the gigantic Hall effect. We observe a dramatic change in the Hall effect upon the transformation of a spin hedgehog crystal in a chiral magnet MnGe through combined measurements of magnetotransport and small-angle neutron scattering (SANS). At low temperatures, well-defined SANS peaks and a negative Hall signal are each consistent with expectations for a static hedgehog lattice. In contrast, a positive Hall signal takes over when the hedgehog lattice fluctuates at higher temperatures, with a diffuse SANS signal observed upon decomposition of the hedgehog lattice. Our approach provides a simple way to both distinguish and disentangle the roles of static and dynamic emergent monopoles on the augmented Hall motion of conduction electrons.

5.
Phys Rev Lett ; 122(15): 159903, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31050523

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.117.127202.

6.
Nat Mater ; 16(5): 516-521, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28191899

RESUMO

The axion insulator which may exhibit an exotic quantized magnetoelectric effect is one of the most interesting quantum phases predicted for the three-dimensional topological insulator (TI). The axion insulator state is expected to show up in magnetically doped TIs with magnetizations pointing inwards and outwards from the respective surfaces. Towards the realization of the axion insulator, we here engineered a TI heterostructure in which magnetic ions (Cr) are modulation-doped only in the vicinity of the top and bottom surfaces of the TI ((Bi,Sb)2Te3) film. A separation layer between the two magnetic layers weakens interlayer coupling between them, enabling the magnetization reversal of individual layers. We demonstrate the realization of the axion insulator by observing a zero Hall plateau (ZHP) (where both the Hall and longitudinal conductivity become zero) in the electric transport properties, excluding the other possible origins for the ZHP. The manifestation of the axion insulator can lead to a new stage of research on novel magnetoelectric responses in topological matter.

7.
Phys Rev Lett ; 120(20): 206402, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864291

RESUMO

The spin states of Co^{3+} ions in perovskite-type LaCoO_{3}, governed by the complex interplay between the electron-lattice interactions and the strong electron correlations, still remain controversial due to the lack of experimental techniques which can directly detect them. In this Letter, we revealed the tensile-strain dependence of spin states, i.e., the ratio of the high- and low-spin states, in epitaxial thin films and a bulk crystal of LaCoO_{3} via resonant inelastic soft x-ray scattering. A tensile strain as small as 1.0% was found to realize different spin states from that in the bulk.

8.
Nature ; 487(7408): 459-62, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22837001

RESUMO

In the classic transistor, the number of electric charge carriers--and thus the electrical conductivity--is precisely controlled by external voltage, providing electrical switching capability. This simple but powerful feature is essential for information processing technology, and also provides a platform for fundamental physics research. As the number of charges essentially determines the electronic phase of a condensed-matter system, transistor operation enables reversible and isothermal changes in the system's state, as successfully demonstrated in electric-field-induced ferromagnetism and superconductivity. However, this effect of the electric field is limited to a channel thickness of nanometres or less, owing to the presence of Thomas-Fermi screening. Here we show that this conventional picture does not apply to a class of materials characterized by inherent collective interactions between electrons and the crystal lattice. We prepared metal-insulator-semiconductor field-effect transistors based on vanadium dioxide--a strongly correlated material with a thermally driven, first-order metal-insulator transition well above room temperature--and found that electrostatic charging at a surface drives all the previously localized charge carriers in the bulk material into motion, leading to the emergence of a three-dimensional metallic ground state. This non-local switching of the electronic state is achieved by applying a voltage of only about one volt. In a voltage-sweep measurement, the first-order nature of the metal-insulator transition provides a non-volatile memory effect, which is operable at room temperature. Our results demonstrate a conceptually new field-effect device, extending the concept of electric-field control to macroscopic phase control.

9.
Phys Rev Lett ; 119(13): 137204, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341677

RESUMO

The current-nonlinear Hall effect or second harmonic Hall voltage is widely used as one of the methods for estimating charge-spin conversion efficiency, which is attributed to the magnetization oscillation by spin-orbit torque (SOT). Here, we argue the second harmonic Hall voltage under a large in-plane magnetic field with an in-plane magnetization configuration in magnetic-nonmagnetic topological insulator (TI) heterostructures, Cr_{x}(Bi_{1-y}Sb_{y})_{2-x}Te_{3}/(Bi_{1-y}Sb_{y})_{2}Te_{3}, where it is clearly shown that the large second harmonic voltage is governed not by SOT but mainly by asymmetric magnon scattering without macroscopic magnetization oscillation. Thus, this method does not allow an accurate estimation of charge-spin conversion efficiency in TI. Instead, the SOT contribution is exemplified by current pulse induced nonvolatile magnetization switching, which is realized with a current density of 2.5×10^{10} A m^{-2}, showing its potential as a spintronic material.

10.
Phys Rev Lett ; 118(24): 247601, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665638

RESUMO

We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-to-metal transition in the doped manganite Pr_{0.5}Ca_{0.5}MnO_{3} after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density-functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drives these dynamics, highlighting a new avenue of nonlinear phonon control.

11.
Neth Heart J ; 25(12): 664-668, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29127646

RESUMO

BACKGROUND: Monosodium glutamate (MSG), also referred to as Vetsin or E621, is a flavour enhancer frequently used in Asian cuisine and abundantly present in the famous Chinese dish Peking duck. MSG is notorious for triggering the onset of the so-called 'Chinese restaurant syndrome' (CRS), a complex of unpleasant symptoms, which might include flushing, sweating and the onset of atrial fibrillation (AF). This study aims to determine the effects of MSG on the occurrence of AF. METHODS: We conducted a placebo self-controlled single-arm study in the Academic Medical Centre in Amsterdam. We included paroxysmal AF patients who reported a consistent onset of AF upon MSG intake. During three admissions, participants were subsequently administered: placebo, 1.5 g and 3 g MSG. If AF was recorded after the dose of 1.5 g MSG, patients were given another placebo instead of 3 g MSG. The primary outcome was the onset of AF registered by 24-hour Holter monitoring. The secondary outcomes were any other arrhythmia and the onset of CRS defined as two or more symptoms of CRS after MSG intake. RESULTS: Six men participated in the study. Both 1.5 g and 3 g MSG were unrelated to CRS, arrhythmias or AF occurrence. CONCLUSION: Peking duck can be put on the Christmas menu without risking guests to be admitted to the emergency department with new episodes of AF.

12.
Phys Rev Lett ; 117(12): 127202, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27689294

RESUMO

We report current-direction dependent or unidirectional magnetoresistance (UMR) in magnetic or nonmagnetic topological insulator (TI) heterostructures, Cr_{x}(Bi_{1-y}Sb_{y})_{2-x}Te_{3}/(Bi_{1-y}Sb_{y})_{2}Te_{3}, that is several orders of magnitude larger than in other reported systems. From the magnetic field and temperature dependence, the UMR is identified to originate from the asymmetric scattering of electrons by magnons. In particular, the large magnitude of UMR is an outcome of spin-momentum locking and a small Fermi wave number at the surface of TI. In fact, the UMR is maximized around the Dirac point with the minimal Fermi wave number.

13.
Phys Rev Lett ; 116(15): 156801, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27127978

RESUMO

Structurally coherent and chemically abrupt interfaces formed between polar and nonpolar perovskite oxides provide an ideal platform for examining the purely electronic reconstruction known as the polar catastrophe and the emergence of mobile or bound charges at the interface. The appearance of mobile charges induced by the polar catastrophe is already established in the LaAlO_{3}/SrTiO_{3} heterojunctions. Although not experimentally verified, the polar catastrophe can also lead to the emergence of spontaneous polarization. We report that thin films of originally nonpolar LaFeO_{3} grown on SrTiO_{3} are converted to polar as a consequence of the polar catastrophe. The induced spontaneous polarization evokes photovoltaic properties distinct from conventional p-n junctions, such as a switching of the photocurrent direction by changing the interfacial atomic sequence. The control of the bulk polarization by engineering the interface demonstrated here will expand the possibilities for designing and realizing new polar materials with photovoltaic functions.

14.
Nat Mater ; 13(3): 253-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24553653

RESUMO

Topological insulators are a class of semiconductor exhibiting charge-gapped insulating behaviour in the bulk, but hosting a spin-polarized massless Dirac electron state at the surface. The presence of a topologically protected helical edge channel has been verified for the vacuum-facing surface of several topological insulators by means of angle-resolved photoemission spectroscopy and scanning tunnelling microscopy. By performing tunnelling spectroscopy on heterojunction devices composed of p-type topological insulator (Bi1−xSbx)2Te3 and n-type conventional semiconductor InP, we report the observation of such states at the solid-state interface. Under an applied magnetic field, we observe a resonance in the tunnelling conductance through the heterojunction due to the formation of Landau levels of two-dimensional Dirac electrons at the interface. Moreover, resonant tunnelling spectroscopy reveals a systematic dependence of the Fermi velocity and Dirac point energy on the composition x. The successful formation of robust non-trivial edge channels at a solid-state interface is an essential step towards functional junctions based on topological insulators.

15.
Nat Mater ; 13(10): 923-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25087068

RESUMO

Strongly correlated electron systems often exhibit very strong interactions between structural and electronic degrees of freedom that lead to complex and interesting phase diagrams. For technological applications of these materials it is important to learn how to drive transitions from one phase to another. A key question here is the ultimate speed of such phase transitions, and to understand how a phase transition evolves in the time domain. Here we apply time-resolved X-ray diffraction to directly measure the changes in long-range order during ultrafast melting of the charge and orbitally ordered phase in a perovskite manganite. We find that although the actual change in crystal symmetry associated with this transition occurs over different timescales characteristic of the many electronic and vibrational coordinates of the system, the dynamics of the phase transformation can be well described using a single time-dependent 'order parameter' that depends exclusively on the electronic excitation.

16.
Phys Rev Lett ; 114(19): 197202, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26024193

RESUMO

Through broadband microwave spectroscopy in Faraday geometry, we observe distinct absorption spectra accompanying magnetoelectric (ME) resonance for oppositely propagating microwaves, i.e., directional dichroism, in the multiferroic chiral-lattice magnet Cu_{2}OSeO_{3}. The magnitude of the directional dichroism critically depends on the magnetic-field direction. Such behavior is well accounted for by considering the relative direction of the oscillating electric polarizations induced via the ME effect with respect to microwave electric fields. Directional dichroism in a system with an arbitrary form of ME coupling can be also discussed in the same manner.


Assuntos
Cobre/química , Imãs/química , Modelos Teóricos , Ácido Selenioso/química , Dicroísmo Circular , Micro-Ondas , Estereoisomerismo
17.
Phys Rev Lett ; 115(19): 197601, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26588414

RESUMO

We report magnetotransport measurements on a high-mobility two-dimensional electron system at the nonmagnetic MgZnO/ZnO heterointerface showing distinct behavior for electrons with spin-up and spin-down orientations. The low-field Shubnikov-de Haas oscillations manifest alternating resistance peak heights which can be attributed to distinct scattering rates for different spin orientations. The tilt-field measurements at a half-integer filling factor reveal that the majority spins show usual diffusive behavior, i.e., peaks with the magnitude proportional to the index of the Landau level at the Fermi energy. By contrast, the minority spins develop "plateaus" with the magnitude of dissipative resistivity that is fairly independent of the Landau level index and is of the order of the zero-field resistivity.

18.
Phys Rev Lett ; 115(26): 266601, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26765011

RESUMO

The longitudinal spin Seebeck effect has been investigated for a uniaxial antiferromagnetic insulator Cr(2)O(3), characterized by a spin-flop transition under magnetic field along the c axis. We have found that a temperature gradient applied normal to the Cr(2)O(3)/Pt interface induces inverse spin Hall voltage of spin-current origin in Pt, whose magnitude turns out to be always proportional to magnetization in Cr(2)O(3). The possible contribution of the anomalous Nernst effect is confirmed to be negligibly small. The above results establish that an antiferromagnetic spin wave can be an effective carrier of spin current.

19.
Lupus ; 23(10): 1031-41, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24836587

RESUMO

Autoantibodies to proliferating cell nuclear antigen (PCNA) are specifically, if rarely, present in systemic lupus erythematosus (SLE) patient sera. Even SLE patients lacking PCNA reactivity often show reaction to PCNA-binding protein. Here, immunoreactivity to chromatin assembly factor-1 (CAF-1), an essential molecule for DNA replication and a PCNA-binding protein, was compared for the sera of SLE patients, normal healthy controls (NHCs) and other disease controls, and in autoimmune sera reactive to standard autoantigens, by enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence, and immunoblotting. CAF1 and IRF1 expression in SLE and NHC peripheral mononuclear cells were compared by quantitative real-time polymerase chain reaction. Serum interferon-γ-inducing protein-10 and anti-double-stranded (ds)DNA antibody levels were measured by ELISA. Increased CAF-1 autoimmune reactivity was recognized in SLE or serum anti-dsDNA antibody-positive patients. Significantly greater central nervous system (CNS) involvement (aseptic meningitis) and serum anti-dsDNA antibody titers were present more often in anti-CAF-1 antibody-positive than antibody-negative SLE patients. IFN-γ positively regulated CAF-1 expression in vitro and was associated with anti-CAF-1 antibody production in SLE. Thus, a novel anti-CAF-1 autoantibody is frequently found in patients with SLE and is a useful biomarker for diagnosis, especially in cases with CNS involvement. Aberrant IFN-γ regulation appears to play an important role in anti-CAF-1 antibody production in SLE.


Assuntos
Autoanticorpos/sangue , Fator 1 de Modelagem da Cromatina/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Adolescente , Adulto , Anticorpos Antinucleares/sangue , Autoimunidade , Biomarcadores/sangue , Estudos de Casos e Controles , Células Cultivadas , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Interferon gama/metabolismo , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Adulto Jovem
20.
Nat Mater ; 11(2): 103-13, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22270825

RESUMO

Recent technical advances in the atomic-scale synthesis of oxide heterostructures have provided a fertile new ground for creating novel states at their interfaces. Different symmetry constraints can be used to design structures exhibiting phenomena not found in the bulk constituents. A characteristic feature is the reconstruction of the charge, spin and orbital states at interfaces on the nanometre scale. Examples such as interface superconductivity, magneto-electric coupling, and the quantum Hall effect in oxide heterostructures are representative of the scientific and technological opportunities in this rapidly emerging field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA