Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Stem Cells ; 37(9): 1130-1135, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31021472

RESUMO

This report summarizes the recent activity of the International Stem Cell Banking Initiative held at Harvard Stem Cell Institute, Boston, MA, USA, on June 18, 2017. In this meeting, we aimed to find consensus on ongoing issues of quality control (QC), safety, and efficacy of human pluripotent stem cell banks and their derivative cell therapy products for the global harmonization. In particular, assays for the QC testing such as pluripotency assays test and general QC testing criteria were intensively discussed. Moreover, the recent activities of global stem cell banking centers and the regulatory bodies were briefly summarized to provide an overview on global developments and issues. Stem Cells 2019;37:1130-1135.


Assuntos
Células-Tronco Pluripotentes/citologia , Células-Tronco/citologia , Bancos de Tecidos/normas , Boston , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Cooperação Internacional , Controle de Qualidade
2.
Angew Chem Int Ed Engl ; 56(7): 1765-1770, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28067441

RESUMO

A major hurdle in stem cell therapy is the tumorigenic risk of residual undifferentiated stem cells. This report describes the design and evaluation of synthetic hybrid molecules that efficiently reduce the number of human induced pluripotent stem cells (hiPSCs) in cell mixtures. The design takes advantage of Kyoto probe 1 (KP-1), a fluorescent chemical probe for hiPSCs, and clinically used anticancer drugs. Among the KP-1-drug conjugates we synthesized, we found an exceptionally selective, chemically tractable molecule that induced the death of hiPSCs. Mechanistic analysis suggested that the high selectivity originates from the synergistic combination of transporter-mediated efflux and the cytotoxicity mode of action. The present study offers a chemical and mechanistic rationale for designing selective, safe, and simple reagents for the preparation of non-tumorigenic clinical samples.


Assuntos
Antineoplásicos/química , Separação Celular/métodos , Corantes Fluorescentes/química , Células-Tronco Pluripotentes Induzidas/citologia , Rodaminas/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Corantes Fluorescentes/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Rodaminas/farmacologia
3.
J Am Chem Soc ; 136(28): 9798-801, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24992689

RESUMO

One of the current obstacles to stem cell therapy is the tumorigenic potential of residual undifferentiated stem cells. The present study reports rediscovery of a synthetic derivative of okadaic acid, a marine polyether toxin, as a reagent that selectively induces the death of human pluripotent stem cells. Cell-based screening of 333 cytotoxic compounds identified methyl 27-deoxy-27-oxookadaate (molecule 1) as a substrate of two ATP-binding cassette (ABC) transporters, ABCB1 (MDR1) and ABCG2 (BCRP), whose expression is repressed in human embryonic stem cells and induced pluripotent stem cells. The results demonstrate that selective elimination of human pluripotent stem cells can be achieved by designing cytotoxic small molecules with appropriate ABC-transporter selectivity.


Assuntos
Produtos Biológicos/farmacologia , Ácido Okadáico/análogos & derivados , Ácido Okadáico/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Rodaminas/química , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Corantes Fluorescentes , Humanos , Neurônios/efeitos dos fármacos
4.
Biochem Biophys Res Commun ; 434(4): 710-6, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23541943

RESUMO

Human embryonic stem cells (hESCs) and induced pluripotent cells have the potential to provide an unlimited source of tissues for regenerative medicine. For this purpose, development of defined/xeno-free culture systems under feeder-free conditions is essential for the expansion of hESCs. Most defined/xeno-free media for the culture of hESCs contain basic fibroblast growth factor (bFGF). Therefore, bFGF is thought to have an almost essential role for the expansion of hESCs in an undifferentiated state. Here, we report identification of small molecules, some of which were neurotransmitter antagonists (trimipramine and ethopropazine), which promote long-term hESC self-renewal without bFGF in the medium. The hESCs maintained high expression levels of pluripotency markers, had a normal karyotype after 20 passages, and could differentiate into all three germ layers.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Compostos Orgânicos/farmacologia , Bibliotecas de Moléculas Pequenas , Animais , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica , Metotrimeprazina/química , Metotrimeprazina/farmacologia , Camundongos , Camundongos SCID , Estrutura Molecular , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Compostos Orgânicos/química , Fenotiazinas/química , Fenotiazinas/farmacologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Prometazina/química , Prometazina/farmacologia , Trimeprazina/química , Trimeprazina/farmacologia , Trimipramina/química , Trimipramina/farmacologia
5.
Mol Ther ; 20(2): 424-31, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22146343

RESUMO

Low efficiencies of gene targeting via homologous recombination (HR) have limited basic research and applications using human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Here, we show highly and equally efficient gene knockout and knock-in at both transcriptionally active (HPRT1, KU80, LIG1, LIG3) and inactive (HB9) loci in these cells using high-capacity helper-dependent adenoviral vectors (HDAdVs). Without the necessity of introducing artificial DNA double-strand breaks, 7-81% of drug-resistant colonies were gene-targeted by accurate HR, which were not accompanied with additional ectopic integrations. Even at the motor neuron-specific HB9 locus, the enhanced green fluorescent protein (EGFP) gene was accurately knocked in in 23-57% of drug-resistant colonies. In these clones, induced differentiation into the HB9-positive motor neuron correlated with EGFP expression. Furthermore, HDAdV infection had no detectable adverse effects on the undifferentiated state and pluripotency of hESCs and hiPSCs. These results suggest that HDAdV is one of the best methods for efficient and accurate gene targeting in hESCs and hiPSCs and might be especially useful for therapeutic applications.


Assuntos
Adenoviridae/genética , Células-Tronco Embrionárias/metabolismo , Vetores Genéticos/genética , Recombinação Homóloga , Células-Tronco Pluripotentes Induzidas/metabolismo , Antígenos Nucleares/genética , Linhagem Celular , DNA Ligase Dependente de ATP , DNA Ligases/genética , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/citologia , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Ordem dos Genes , Marcação de Genes , Heterozigoto , Humanos , Hipoxantina Fosforribosiltransferase/genética , Células-Tronco Pluripotentes Induzidas/citologia , Autoantígeno Ku , Mutação , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas de Xenopus
6.
Biomater Sci ; 11(9): 2974-2987, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37009904

RESUMO

Although human pluripotent stem cell (hPSC) lines were initially established in culture using feeder cells, the development of culture media and substrates is essential for safe, stable, high-quality, and efficient production of large numbers of cells. Many researchers are now culturing hPSCs in chemically defined media and on culture substrates without feeder cells. In this review, we first discuss the problems with Matrigel, which has long been used as a culture substrate. Then, we summarize the development of extracellular matrix proteins for hPSCs, which are now the mainstream alternative, and synthetic substrates that are expected to be the future mainstream alternative. We also highlight three-dimensional culture for suitable mass production of hPSCs.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes , Humanos , Técnicas de Cultura de Células/métodos , Linhagem Celular , Células Alimentadoras , Meios de Cultura/metabolismo , Diferenciação Celular
7.
Nucleic Acids Res ; 38(7): e96, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20071742

RESUMO

Random integration is one of the more straightforward methods to introduce a transgene into human embryonic stem (ES) cells. However, random integration may result in transgene silencing and altered cell phenotype due to insertional mutagenesis in undefined gene regions. Moreover, reliability of data may be compromised by differences in transgene integration sites when comparing multiple transgenic cell lines. To address these issues, we developed a genetic manipulation strategy based on homologous recombination and Cre recombinase-mediated site-specific integration. First, we performed gene targeting of the hypoxanthine phosphoribosyltransferase 1 (HPRT) locus of the human ES cell line KhES-1. Next, a gene-replacement system was created so that a circular vector specifically integrates into the targeted HPRT locus via Cre recombinase activity. We demonstrate the application of this strategy through the creation of a tetracycline-inducible reporter system at the HPRT locus. We show that reporter gene expression was responsive to doxycycline and that the resulting transgenic human ES cells retain their self-renewal capacity and pluripotency.


Assuntos
Células-Tronco Embrionárias/metabolismo , Marcação de Genes/métodos , Loci Gênicos , Transgenes , Linhagem Celular , Células-Tronco Embrionárias/citologia , Feminino , Regulação da Expressão Gênica , Humanos , Hipoxantina Fosforribosiltransferase/genética , Recombinação Genética
8.
Regen Ther ; 21: 553-559, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36397823

RESUMO

Introduction: We recently established clinical-grade human embryonic stem cell (hESC) line KthES11 in accordance with current good manufacturing practice standards in Japan. Despite this success, the establishment efficiency was very low at 7.1% in the first period. Methods: To establish clinical-grade hESC lines, we used xeno-free chemically defined medium StemFit AK03N with the LM-E8 fragments instead of feeder cells. The protocol was then optimized, especially in the early culture phase. Results: We established five hESC lines (KthES12, KthES13, KthES14, KthES15, and KthES16) with 45.5% efficiency. All five hESC lines showed typical hESC-like morphology, a normal karyotype, pluripotent state, and differentiation potential for all three germ layers. Furthermore, we developed efficient procedures to prepare master cell stocks for clinical-grade hESC lines and an efficient strategy for quality control testing. Conclusions: Our master cell stocks of hESC lines may contribute to therapeutic applications using human pluripotent stem cells in Japan and other countries.

9.
Genes Cells ; 15(5): 455-70, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20384793

RESUMO

Human embryonic stem cell (ESC) pluripotency is thought to be regulated by several key transcription factors including OCT4, NANOG, and SOX2. Although the functions of OCT4 and NANOG in human ESCs are well defined, that of SOX2 has not been fully characterized. To investigate the role of SOX2, we modulated the level of SOX2 expression in human ESCs. Reduction of SOX2 expression in human ESCs induced trophectodermal and partial endodermal differentiation. Interestingly, CDX2, a typical trophectoderm-associated gene, was not up-regulated. In contrast, using the Tet-on gene inducible system, SOX2 over-expression in human ESCs induced trophectoderm differentiation accompanied by increased CDX2 expression. Additionally, SOX2 over-expression resulted in an increase in CGalpha-positive cells, which marks later stage trophectoderm development, rather than placental lactogen-positive cells. Thus, over-expression as well as repression of SOX2 expression in human ESCs resulted in their differentiation into the trophectoderm lineage. Our data show that SOX2 plays an important role in the maintenance of pluripotency of human ESCs and possibly, trophoblast development.


Assuntos
Células-Tronco Embrionárias/fisiologia , Células-Tronco Pluripotentes/fisiologia , Fatores de Transcrição SOXB1/metabolismo , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXB1/genética , Trofoblastos/citologia , Trofoblastos/metabolismo
10.
Genes Cells ; 15(12): 1216-27, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21050342

RESUMO

Cardiomyocytes arise from cells that migrate to the mid-to-anterior region of the primitive streak (PS) during embryogenesis. We previously showed that canonical Wnt/ß-catenin pathway signaling leads to the development of nascent PS populations from human embryonic stem cells (hESCs) and that synergistic activation of the Wnt/ß-catenin pathway and inhibition of bone morphogenetic protein (BMP) signaling by Noggin induced the formation of anterior PS cells. We herein demonstrate that anterior PS cells induced by the activation of ß-catenin with Noggin differentiate into functional cardiomyocytes when cultured in suspension with BMP4 and fibroblast growth factor 2 (FGF2). All aggregates generated from the anterior PS cells developed into contracting cells demonstrating their cardiac potential. More than 30% of the cells in each aggregate were α-actinin-positive cardiomyocytes. In addition, these cardiomyocytes could be easily purified up to 80% by simple size fractionation. In contrast, the posterior PS cells induced by ß-catenin activation without Noggin showed poor cardiac potential. These results show that the commitment to a cardiac lineage in vitro occurs through similar cellular and molecular signaling pathways involved in cardiac development in vivo, thus providing a valuable culture model for studying early cardiac developmental events in hESCs.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Células-Tronco Embrionárias/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Linha Primitiva/citologia , Transdução de Sinais , beta Catenina/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Células-Tronco Embrionárias/citologia , Humanos
11.
Proc Natl Acad Sci U S A ; 105(37): 13781-6, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18768795

RESUMO

Human embryonic stem (hES) cells are regarded as a potentially unlimited source of cellular materials for regenerative medicine. For biological studies and clinical applications using primate ES cells, the development of a general strategy to obtain efficient gene delivery and genetic manipulation, especially gene targeting via homologous recombination (HR), would be of paramount importance. However, unlike mouse ES (mES) cells, efficient strategies for transient gene delivery and HR in hES cells have not been established. Here, we report that helper-dependent adenoviral vectors (HDAdVs) were able to transfer genes in hES and cynomolgus monkey (Macaca fasicularis) ES (cES) cells efficiently. Without losing the undifferentiated state of the ES cells, transient gene transfer efficiency was approximately 100%. Using HDAdVs with homology arms, approximately one out of 10 chromosomal integrations of the vector was via HR, whereas the rate was only approximately 1% with other gene delivery methods. Furthermore, in combination with negative selection, approximately 45% of chromosomal integrations of the vector were targeted integrations, indicating that HDAdVs would be a powerful tool for genetic manipulation in hES cells and potentially in other types of human stem cells, such as induced pluripotent stem (iPS) cells.


Assuntos
Adenoviridae/genética , Células-Tronco Embrionárias/metabolismo , Expressão Gênica/genética , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Macaca fascicularis/genética , Animais , Linhagem Celular , Humanos , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Camundongos
12.
Stem Cell Res ; 54: 102383, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34126558

RESUMO

The human embryonic stem cell line, KthES11, is derived from a normal healthy blastocyst donated for clinical research. The inner cell mass (ICM) was isolated using mechanical dissection and plated on laminin fragments. Cell line derivation, its propagation and storage were performed without feeders in an animal product-free environment according to current Good Manufacturing Practice (cGMP) standards. KthES11 shows a normal karyotype, pluripotent state and differentiation to the three germ layers. The cell line was further validated for sterility, mycoplasma-free, antibiotic residues and specific human pathogens.


Assuntos
Células-Tronco Embrionárias Humanas , Blastocisto , Diferenciação Celular , Linhagem Celular , Hibridização Genômica Comparativa , Genótipo , Teste de Histocompatibilidade , Humanos , Japão , Cariótipo , Microscopia de Fluorescência
13.
Cell Tissue Res ; 339(3): 505-12, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20041263

RESUMO

Hepatocytes derived from human embryonic stem cells (hESCs) are an attractive cell source for regenerative medicine. We previously reported the differentiation of hESCs into alpha-fetoprotein (AFP)-producing endodermal cells by using extracellular matrix and growth factors. We also reported the establishment of the MLSgt20 cell line, which was derived from mesenchymal cells residing in murine fetal livers and accelerated the hepatic maturation of both murine hepatic progenitor cells and murine ESCs. In this study, hESC-derived AFP-producing cells were isolated by using a flow cytometer and co-cultured with MLSgt20 cells. The co-cultured hESC-derived AFP-producing cells had the immunocytological characteristics of hepatocytes, expressed mature hepatocyte markers (as indicated by reverse transcription and the polymerase chain reaction), and displayed higher hepatocyte functions including ammonia removal, cytochrome P450 3A4/7 activity, and the ability to produce and store glycogen. However, the MLSgt20 cells did not directly cause undifferentiated hESCs to mature into hepatocyte-like cells. The co-culture method was thus successfully shown to induce the differentiation of hESC-derived endodermal cells into functional hepatocyte-like cells.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Feto/citologia , Fígado/citologia , Fígado/embriologia , Mesoderma/citologia , Animais , Biomarcadores/metabolismo , Agregação Celular , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Imuno-Histoquímica , Fígado/metabolismo , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Stem Cell Reports ; 14(3): 506-519, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32084386

RESUMO

Naive and primed human pluripotent stem cells (hPSCs) have provided useful insights into the regulation of pluripotency. However, the molecular mechanisms regulating naive conversion remain elusive. Here, we report intermediate naive conversion induced by overexpressing nuclear receptor 5A1 (NR5A1) in hPSCs. The cells displayed some naive features, such as clonogenicity, glycogen synthase kinase 3ß, and mitogen-activated protein kinase (MAPK) independence, expression of naive-associated genes, and two activated X chromosomes, but lacked others, such as KLF17 expression, transforming growth factor ß independence, and imprinted gene demethylation. Notably, NR5A1 negated MAPK activation by fibroblast growth factor 2, leading to cell-autonomous self-renewal independent of MAPK inhibition. These phenotypes may be associated with naive conversion, and were regulated by a DPPA2/4-dependent pathway that activates the selective expression of naive-associated genes. This study increases our understanding of the mechanisms regulating the conversion from primed to naive pluripotency.


Assuntos
Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Fator Esteroidogênico 1/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Histonas/metabolismo , Humanos , Análise de Componente Principal , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fator Esteroidogênico 1/genética , Transcrição Gênica/efeitos dos fármacos
15.
Biochem Biophys Res Commun ; 388(4): 711-7, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19695233

RESUMO

Human pluripotent stem cells, such as embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), have the ability to differentiate into various cell types, and will become a potential source of cellular materials for regenerative medicine. To make full use of hESCs or hiPSCs for both basic and clinical research, genetic modification, especially gene targeting via homologous recombination (HR), would be an essential technique. This report describes the successful gene targeting of the hypoxanthine phosphoribosyl transferase 1 (HPRT1) and the NANOG loci in human pluripotent stem cells with adeno-associated virus (AAV) vectors. At the HPRT1 locus, up to 1% of stable transformants were targeted via HR with an AAV-HPRT1 targeting vector, without loss of pluripotency. On the other hand, 20-87% of stable transformants were targeted using an AAV-NANOG-targeting vector designed for the promoter-trap strategy. In the KhES-3 cell line, which shows particularly high fragility to experimental manipulation, gene targeting was successful only by using an AAV vector but not by electroporation. In addition to hESC, gene targeting was achieved in hiPSC lines at similar frequencies. These data indicate that AAV vectors may therefore be a useful tool to introduce genetic modifications in hESCs and hiPSCs.


Assuntos
Dependovirus , Marcação de Genes/métodos , Vetores Genéticos , Células-Tronco Pluripotentes/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Hipoxantina Fosforribosiltransferase/genética , Proteína Homeobox Nanog
16.
Biochem Biophys Res Commun ; 375(1): 27-32, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18675790

RESUMO

Human embryonic stem cells (hESCs) are thought to be a promising cell source for cell transplantation therapy. For such a clinical application, the hESCs should be manipulated using appropriate and qualified materials. In this study, we examined the efficacy of recombinant human laminin (rhLM) isoforms on the undifferentiated growth of hESCs. We first determined the major integrins expressed on the hESCs to reveal the preference of the hESCs for rhLMs, and found that the hESCs mainly expressed integrin alpha6beta1, which binds predominantly to laminin-111, -332 and -511/-521. When the hESCs were seeded onto rhLMs, the cells indeed adhered markedly to rhLM-332, and to rhLM-511 and rhLM-111 to a lesser extent. The hESCs proliferated on these three rhLMs for several passages while preserving their pluripotency. These results show that rhLM-111, -332, and -511 are good substrates to expand undifferentiated hESCs due to their high affinity to integrin alpha6beta1 expressed on hESCs.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Laminina/farmacologia , Proteínas Recombinantes/farmacologia , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Humanos , Integrina alfa6beta1/biossíntese , Isoformas de Proteínas/farmacologia
18.
Methods Mol Biol ; 1307: 61-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-24875248

RESUMO

Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human-induced pluripotent stem cells, are a renewable cell source for a wide range of applications in regenerative medicine and useful tools for human disease modeling and drug discovery. For these purposes, large numbers of high-quality cells are essential. Recently, we showed that a biological substrate, recombinant E8 fragments of laminin isoforms, sustains long-term self-renewal of hPSCs in defined, xeno-free medium with dissociated single-cell passaging. Here, we describe a modified culture system with similar performance to efficiently expand hPSCs under defined, xeno-free conditions using a non-biological synthetic substrate.


Assuntos
Acrilatos/farmacologia , Técnicas de Cultura de Células/métodos , Peptídeos/farmacologia , Células-Tronco Pluripotentes/citologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Criopreservação , Meios de Cultura/farmacologia , Citometria de Fluxo , Humanos , Cariotipagem
19.
Curr Protoc Stem Cell Biol ; 32: 1C.18.1-1C.18.8, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25640816

RESUMO

This unit describes a protocol for efficient expansion of human pluripotent stem cells (hPSCs). A key feature of this method is subculture of hPSCs by single-cell dissociation passaging on substrates coated with recombinant E8 fragments of human laminin isoforms (LM-E8s). LM-E8s, provide superior adhesion over intact laminin isoforms and Matrigel. Single hPSCs seeded on LM-E8s show accelerated migration and rapid reconstruction of clusters, resulting in robust survival and proliferation. This protocol yields 200-fold more hPSCs than conventional subculture methods in 1 month of culture. Furthermore, this protocol can be easily adapted to most hPSC lines in combination with the use of various xeno-free, defined culture media, and large-scale expansion of hPSCs is easily achievable to facilitate the practical applications of hPSCs.


Assuntos
Técnicas de Cultura de Células/métodos , Laminina/metabolismo , Células-Tronco Pluripotentes/citologia , Proteínas Recombinantes/metabolismo , Animais , Células Alimentadoras/citologia , Humanos , Camundongos , Isoformas de Proteínas/metabolismo , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA