Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(26): e2118283119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737833

RESUMO

Over half the world's population is at risk for viruses transmitted by Aedes mosquitoes, such as dengue and Zika. The primary vector, Aedes aegypti, thrives in urban environments. Despite decades of effort, cases and geographic range of Aedes-borne viruses (ABVs) continue to expand. Rigorously proven vector control interventions that measure protective efficacy against ABV diseases are limited to Wolbachia in a single trial in Indonesia and do not include any chemical intervention. Spatial repellents, a new option for efficient deployment, are designed to decrease human exposure to ABVs by releasing active ingredients into the air that disrupt mosquito-human contact. A parallel, cluster-randomized controlled trial was conducted in Iquitos, Peru, to quantify the impact of a transfluthrin-based spatial repellent on human ABV infection. From 2,907 households across 26 clusters (13 per arm), 1,578 participants were assessed for seroconversion (primary endpoint) by survival analysis. Incidence of acute disease was calculated among 16,683 participants (secondary endpoint). Adult mosquito collections were conducted to compare Ae. aegypti abundance, blood-fed rate, and parity status through mixed-effect difference-in-difference analyses. The spatial repellent significantly reduced ABV infection by 34.1% (one-sided 95% CI lower limit, 6.9%; one-sided P value = 0.0236, z = 1.98). Aedes aegypti abundance and blood-fed rates were significantly reduced by 28.6 (95% CI 24.1%, ∞); z = -9.11) and 12.4% (95% CI 4.2%, ∞); z = -2.43), respectively. Our trial provides conclusive statistical evidence from an appropriately powered, preplanned cluster-randomized controlled clinical trial of the impact of a chemical intervention, in this case a spatial repellent, to reduce the risk of ABV transmission compared to a placebo.


Assuntos
Aedes , Repelentes de Insetos , Controle de Mosquitos , Mosquitos Vetores , Doenças Transmitidas por Vetores , Adulto , Animais , Dengue/epidemiologia , Dengue/prevenção & controle , Humanos , Controle de Mosquitos/normas , Peru/epidemiologia , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/prevenção & controle , Doenças Transmitidas por Vetores/transmissão , Zika virus , Infecção por Zika virus
2.
BMC Public Health ; 22(1): 1924, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243698

RESUMO

Vector-borne diseases are among the most burdensome infectious diseases worldwide with high burden to health systems in developing regions in the tropics. For many of these diseases, vector control to reduce human biting rates or arthropod populations remains the primary strategy for prevention. New vector control interventions intended to be marketed through public health channels must be assessed by the World Health Organization for public health value using data generated from large-scale trials integrating epidemiological endpoints of human health impact. Such phase III trials typically follow large numbers of study subjects to meet necessary power requirements for detecting significant differences between treatment arms, thereby generating substantive and complex datasets. Data is often gathered directly in the field, in resource-poor settings, leading to challenges in efficient data reporting and/or quality assurance. With advancing technology, mobile data collection (MDC) systems have been implemented in many studies to overcome these challenges. Here we describe the development and implementation of a MDC system during a randomized-cluster, placebo-controlled clinical trial evaluating the protective efficacy of a spatial repellent intervention in reducing human infection with Aedes-borne viruses (ABV) in the urban setting of Iquitos, Peru, as well as the data management system that supported it. We discuss the benefits, remaining capacity gaps and the key lessons learned from using a MDC system in this context in detail.


Assuntos
Aedes , Dengue , Animais , Coleta de Dados , Dengue/epidemiologia , Dengue/prevenção & controle , Humanos , Controle de Mosquitos , Mosquitos Vetores , Peru/epidemiologia , Projetos de Pesquisa
3.
Virol J ; 14(1): 82, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420392

RESUMO

BACKGROUND: The appearance of severe Zika virus (ZIKV) disease in the most recent outbreak has prompted researchers to respond through the development of tools to quickly characterize transmission and pathology. We describe here another such tool, a mouse model of ZIKV infection and pathogenesis using the MR766 strain of virus that adds to the growing body of knowledge regarding ZIKV kinetics in small animal models. METHODS: We infected mice with the MR766 strain of ZIKV to determine infection kinetics via serum viremia. We further evaluated infection-induced lesions via histopathology and visualized viral antigen via immunohistochemical labeling. We also investigated the antibody response of recovered animals to both the MR766 and a strain from the current outbreak (PRVABC59). RESULTS: We demonstrate that the IRF3/7 DKO mouse is a susceptible, mostly non-lethal model well suited for the study of infection kinetics, pathological progression, and antibody response. Infected mice presented lesions in tissues that have been associated with ZIKV infection in the human population, such as the eyes, male gonads, and central nervous system. In addition, we demonstrate that infection with the MR766 strain produces cross-neutralizing antibodies to the PRVABC59 strain of the Asian lineage. CONCLUSIONS: This model provides an additional tool for future studies into the transmission routes of ZIKV, as well as for the development of antivirals and other therapeutics, and should be included in the growing list of available tools for investigations of ZIKV infection and pathogenesis.


Assuntos
Estruturas Animais/patologia , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Tropismo Viral , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia , Zika virus/fisiologia , Estruturas Animais/virologia , Animais , Formação de Anticorpos , Surtos de Doenças , Histocitoquímica , Humanos , Imuno-Histoquímica , Camundongos , Microscopia , Fatores de Tempo , Zika virus/imunologia , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/imunologia
4.
J Infect Dis ; 214(9): 1357-1360, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27521359

RESUMO

Zika virus has emerged in the Americas, where dengue virus is endemic. Among the 4 serotypes of dengue virus, antibody-dependent enhancement is thought to enhance viral replication and disease severity. Reports suggest that anti-dengue virus antibody may enhance Zika virus replication. We investigated whether Zika virus antibodies enhance dengue virus replication, by exposing C57Bl/6 mice to Zika virus. Polyclonal serum was verified for strong Zika virus-neutralizing, dengue virus-subneutralizing capacity. Then we determined the enhancement capabilities of Zika virus-immune serum for dengue virus in vitro. We showed that Zika virus antibodies have the ability to enhance dengue virus infections, which is important, because in many Zika virus-affected areas, dengue virus is expected to remain endemic.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Anticorpos Facilitadores/imunologia , Vírus da Dengue/genética , Replicação Viral/genética , Zika virus/imunologia , América , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Linhagem Celular , Dengue/sangue , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização/métodos , Sorogrupo , Células Vero , Ensaio de Placa Viral/métodos , Infecção por Zika virus/sangue , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
5.
Parasit Vectors ; 17(1): 254, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863023

RESUMO

BACKGROUND: Aedes aegypti is the primary mosquito vector for several arboviruses, such as dengue, chikungunya and Zika viruses, which cause frequent outbreaks of human disease in tropical and subtropical regions. Control of these outbreaks relies on vector control, commonly in the form of insecticide sprays that target adult female mosquitoes. However, the spatial coverage and frequency of sprays needed to optimize effectiveness are unclear. In this study, we characterize the effect of ultra-low-volume (ULV) indoor spraying of pyrethroid insecticides on Ae. aegypti abundance within households. We also evaluate the effects of spray events during recent time periods or in neighboring households. Improved understanding of the duration and distance of the impact of a spray intervention on Ae. aegypti populations can inform vector control interventions, in addition to modeling efforts that contrast vector control strategies. METHODS: This project analyzes data from two large-scale experiments that involved six cycles of indoor pyrethroid spray applications in 2 years in the Amazonian city of Iquitos, Peru. We developed spatial multi-level models to disentangle the reduction in Ae. aegypti abundance that resulted from (i) recent ULV treatment within households and (ii) ULV treatment of adjacent or nearby households. We compared fits of models across a range of candidate weighting schemes for the spray effect, based on different temporal and spatial decay functions to understand lagged ULV effects. RESULTS: Our results suggested that the reduction of Ae. aegypti in a household was mainly due to spray events occurring within the same household, with no additional effect of sprays that occurred in neighboring households. Effectiveness of a spray intervention should be measured based on time since the most recent spray event, as we found no cumulative effect of sequential sprays. Based on our model, we estimated the spray effect is reduced by 50% approximately 28 days after the spray event. CONCLUSIONS: The reduction of Ae. aegypti in a household was mainly determined by the number of days since the last spray intervention in that same household, highlighting the importance of spray coverage in high-risk areas with a spray frequency determined by local viral transmission dynamics.


Assuntos
Aedes , Características da Família , Inseticidas , Controle de Mosquitos , Mosquitos Vetores , Piretrinas , Análise Espaço-Temporal , Animais , Aedes/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/administração & dosagem , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Piretrinas/farmacologia , Feminino , Peru , Humanos , Densidade Demográfica , Dengue/prevenção & controle , Dengue/transmissão
6.
PLoS One ; 18(2): e0273798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730229

RESUMO

Current knowledge of dengue virus (DENV) transmission provides only a partial understanding of a complex and dynamic system yielding a public health track record that has more failures than successes. An important part of the problem is that the foundation for contemporary interventions includes a series of longstanding, but untested, assumptions based on a relatively small portion of the human population; i.e., people who are convenient to study because they manifest clinically apparent disease. Approaching dengue from the perspective of people with overt illness has produced an extensive body of useful literature. It has not, however, fully embraced heterogeneities in virus transmission dynamics that are increasingly recognized as key information still missing in the struggle to control the most important insect-transmitted viral infection of humans. Only in the last 20 years have there been significant efforts to carry out comprehensive longitudinal dengue studies. This manuscript provides the rationale and comprehensive, integrated description of the methodology for a five-year longitudinal cohort study based in the tropical city of Iquitos, in the heart of the Peruvian Amazon. Primary data collection for this study was completed in 2019. Although some manuscripts have been published to date, our principal objective here is to support subsequent publications by describing in detail the structure, methodology, and significance of a specific research program. Our project was designed to study people across the entire continuum of disease, with the ultimate goal of quantifying heterogeneities in human variables that affect DENV transmission dynamics and prevention. Because our study design is applicable to other Aedes transmitted viruses, we used it to gain insights into Zika virus (ZIKV) transmission when during the project period ZIKV was introduced and circulated in Iquitos. Our prospective contact cluster investigation design was initiated by detecttion of a person with a symptomatic DENV infection and then followed that person's immediate contacts. This allowed us to monitor individuals at high risk of DENV infection, including people with clinically inapparent and mild infections that are otherwise difficult to detect. We aimed to fill knowledge gaps by defining the contribution to DENV transmission dynamics of (1) the understudied majority of DENV-infected people with inapparent and mild infections and (2) epidemiological, entomological, and socio-behavioral sources of heterogeneity. By accounting for factors underlying variation in each person's contribution to transmission we sought to better determine the type and extent of effort needed to better prevent virus transmission and disease.


Assuntos
Arbovírus , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Humanos , Estudos Longitudinais , Estudos Prospectivos , Peru/epidemiologia , Infecção por Zika virus/epidemiologia
7.
PLoS Negl Trop Dis ; 17(9): e0011593, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37656759

RESUMO

Dengue virus (DENV) transmission from humans to mosquitoes is a poorly documented, but critical component of DENV epidemiology. Magnitude of viremia is the primary determinant of successful human-to-mosquito DENV transmission. People with the same level of viremia, however, can vary in their infectiousness to mosquitoes as a function of other factors that remain to be elucidated. Here, we report on a field-based study in the city of Iquitos, Peru, where we conducted direct mosquito feedings on people naturally infected with DENV and that experienced mild illness. We also enrolled people naturally infected with Zika virus (ZIKV) after the introduction of ZIKV in Iquitos during the study period. Of the 54 study participants involved in direct mosquito feedings, 43 were infected with DENV-2, two with DENV-3, and nine with ZIKV. Our analysis excluded participants whose viremia was detectable at enrollment but undetectable at the time of mosquito feeding, which was the case for all participants with DENV-3 and ZIKV infections. We analyzed the probability of onward transmission during 50 feeding events involving 27 participants infected with DENV-2 based on the presence of infectious virus in mosquito saliva 7-16 days post blood meal. Transmission probability was positively associated with the level of viremia and duration of extrinsic incubation in the mosquito. In addition, transmission probability was influenced by the day of illness in a non-monotonic fashion; i.e., transmission probability increased until 2 days after symptom onset and decreased thereafter. We conclude that mildly ill DENV-infected humans with similar levels of viremia during the first two days after symptom onset will be most infectious to mosquitoes on the second day of their illness. Quantifying variation within and between people in their contribution to DENV transmission is essential to better understand the biological determinants of human infectiousness, parametrize epidemiological models, and improve disease surveillance and prevention strategies.


Assuntos
Culicidae , Dengue , Infecção por Zika virus , Zika virus , Animais , Humanos , Viremia , Infecção por Zika virus/epidemiologia , Dengue/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA