RESUMO
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
RESUMO
Heart disease is a leading cause of death in patients with Duchenne muscular dystrophy (DMD), characterized by the progressive replacement of contractile tissue with scar tissue. Effective therapies for dystrophic cardiomyopathy will require addressing the disease before the onset of fibrosis, however, the mechanisms of the early disease are poorly understood. To understand the pathophysiology of DMD, we perform a detailed functional assessment of cardiac function of the mdx mouse, a model of DMD. These studies use a combination of functional, metabolomic, and spectroscopic approaches to fully characterize the contractile, energetic, and mitochondrial function of beating hearts. Through these innovative approaches, we demonstrate that the dystrophic heart has reduced cardiac reserve and is energetically limited. We show that this limitation does not result from poor delivery of oxygen. Using spectroscopic approaches, we provide evidence that mitochondria in the dystrophic heart have attenuated mitochondrial membrane potential and deficits in the flow of electrons in complex IV of the electron transport chain. These studies provide evidence that poor myocardial energetics precede the onset of significant cardiac fibrosis and likely results from mitochondrial dysfunction centered around complex IV and reduced membrane potential. The multimodal approach used here implicates specific molecular components in the etiology of reduced energetics. Future studies focused on these targets may provide therapies that improve the energetics of the dystrophic heart leading to improved resiliency against damage and preservation of myocardial contractile tissue.NEW & NOTEWORTHY Dystrophic hearts have poor contractile reserve that is associated with a reduction in myocardial energetics. We demonstrate that oxygen delivery does not contribute to the limited energy production of the dystrophic heart even with increased workloads. Cytochrome optical spectroscopy of the contracting heart reveals alterations in complex IV and evidence of depolarized mitochondrial membranes. We show specific alterations in the electron transport chain of the dystrophic heart that may contribute to poor myocardial energetics.
Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Animais , Camundongos , Humanos , Camundongos Endogâmicos mdx , Miocárdio , Coração , Distrofia Muscular de Duchenne/complicações , Oxigênio , Modelos Animais de DoençasRESUMO
In this review we will briefly summarize the evidence that autonomic imbalance, more specifically reduced parasympathetic activity to the heart, generates and/or maintains many cardiorespiratory diseases and will discuss mechanisms and sites, from myocytes to the brain, that are potential translational targets for restoring parasympathetic activity and improving cardiorespiratory health.
Assuntos
Insuficiência Cardíaca , Sistema Nervoso Autônomo , Encéfalo , Coração , Frequência Cardíaca , HumanosRESUMO
Altered autonomic balance is a hallmark of numerous cardiovascular diseases, including myocardial infarction (MI). Although device-based vagal stimulation is cardioprotective during chronic disease, a non-invasive approach to selectively stimulate the cardiac parasympathetic system immediately after an infarction does not exist and is desperately needed. Cardiac vagal neurons (CVNs) in the brainstem receive powerful excitation from a population of neurons in the paraventricular nucleus (PVN) of the hypothalamus that co-release oxytocin (OXT) and glutamate to excite CVNs. We tested if chemogenetic activation of PVN-OXT neurons following MI would be cardioprotective. The PVN of neonatal rats was transfected with vectors to selectively express DREADDs within OXT neurons. At 6 weeks of age, an MI was induced and DREADDs were activated with clozapine-N-oxide. Seven days following MI, patch-clamp electrophysiology confirmed the augmented excitatory neurotransmission from PVN-OXT neurons to downstream nuclei critical for parasympathetic activity with treatment (43.7 ± 10 vs 86.9 ± 9 pA; MI vs. treatment), resulting in stark improvements in survival (85% vs. 95%; MI vs. treatment), inflammation, fibrosis assessed by trichrome blue staining, mitochondrial function assessed by Seahorse assays, and reduced incidence of arrhythmias (50% vs. 10% cumulative incidence of ventricular fibrillation; MI vs. treatment). Myocardial transcriptomic analysis provided molecular insight into potential cardioprotective mechanisms, which revealed the preservation of beneficial signaling pathways, including muscarinic receptor activation, in treated animals. These comprehensive results demonstrate that the PVN-OXT network could be a promising therapeutic target to quickly activate beneficial parasympathetic-mediated cellular pathways within the heart during the early stages of infarction.
Assuntos
Infarto do Miocárdio , Ocitocina , Ratos , Animais , Ocitocina/farmacologia , Ocitocina/metabolismo , Ratos Sprague-Dawley , Hipotálamo , Infarto do Miocárdio/metabolismo , Neurônios/metabolismo , Arritmias Cardíacas/metabolismoRESUMO
Arterioles maintain blow flow by adjusting their diameter in response to changes in local blood pressure. In this process called the myogenic response, a vascular smooth muscle mechanosensor controls tone predominantly through altering the membrane potential. In general, myogenic responses occur slowly (minutes). In the heart and skeletal muscle, however, tone is activated rapidly (tens of seconds) and terminated by brief (100 ms) arterial constrictions. Previously, we identified extensive expression of TRPV1 in the smooth muscle of arterioles supplying skeletal muscle, heart and fat. Here we reveal a critical role for TRPV1 in the rapid myogenic tone of these tissues. TRPV1 antagonists dilated skeletal muscle arterioles in vitro and in vivo, increased coronary flow in isolated hearts, and transiently decreased blood pressure. All of these pharmacologic effects were abolished by genetic disruption of TRPV1. Stretch of isolated vascular smooth muscle cells or raised intravascular pressure in arteries triggered Ca2+ signalling and vasoconstriction. The majority of these stretch-responses were TRPV1-mediated, with the remaining tone being inhibited by the TRPM4 antagonist, 9-phenantrol. Notably, tone developed more quickly in arteries from wild-type compared with TRPV1-null mice. Furthermore, the immediate vasodilation following brief constriction of arterioles depended on TRPV1, consistent with a rapid deactivation of TRPV1. Pharmacologic experiments revealed that membrane stretch activates phospholipase C/protein kinase C signalling combined with heat to activate TRPV1, and in turn, L-type Ca2+ channels. These results suggest a critical role, for TRPV1 in the dynamic regulation of myogenic tone and blood flow in the heart and skeletal muscle. KEY POINTS: We explored the physiological role of TRPV1 in vascular smooth muscle. TRPV1 antagonists dilated skeletal muscle arterioles both ex vivo and in vivo, increased coronary perfusion and decreased systemic blood pressure. Stretch of arteriolar myocytes and increases in intraluminal pressure in arteries triggered rapid Ca2+ signalling and vasoconstriction respectively. Pharmacologic and/or genetic disruption of TRPV1 significantly inhibited the magnitude and rate of these responses. Furthermore, disrupting TRPV1 blunted the rapid vasodilation evoked by arterial constriction. Pharmacological experiments identified key roles for phospholipase C and protein kinase C, combined with temperature, in TRPV1-dependent arterial tone. These results show that TRPV1 in arteriolar myocytes dynamically regulates myogenic tone and blood flow in the heart and skeletal muscle.
Assuntos
Canais de Cátion TRPM , Vasoconstrição , Animais , Artérias , Arteríolas/fisiologia , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/fisiologia , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismoRESUMO
Myocardial ischemia has long-lasting negative impacts on cardiomyocyte mitochondrial ATP production. However, the location(s) of damage to the oxidative phosphorylation pathway responsible for altered mitochondrial function is unclear. Mitochondrial reactive oxygen species (ROS) production increases following ischemia, but the specific factors controlling this increase are unknown. To determine how ischemia affects the mitochondrial energy conversion cascade and ROS production, mitochondrial driving forces [redox potential and membrane potential (ΔΨ)] were measured at resting, intermediate, and maximal respiration rates in mitochondria isolated from rat hearts after 60 min of control flow (control) or no-flow ischemia (ischemia). The effective activities of the dehydrogenase enzymes, the electron transport chain (ETC), and ATP synthesis and transport were computed using the driving forces and flux. Ischemia lowered maximal mitochondrial respiration rates and diminished the responsiveness of respiration to both redox potential and ΔΨ. Ischemia decreased the activities of every component of the oxidative phosphorylation pathway: the dehydrogenase enzymes, the ETC, and ATP synthesis and transport. ROS production was linearly related to driving force down the ETC; however, ischemia mitochondria demonstrated a greater driving force down the ETC and higher ROS production. Overall, results indicate that ischemia ubiquitously damages the oxidative phosphorylation pathway, reduces mitochondrial sensitivity to driving forces, and augments the propensity for electrons to leak from the ETC. These findings underscore that strategies to improve mitochondrial function following ischemia must target the entire mitochondrial energy conversion cascade.NEW & NOTEWORTHY This integrative analysis is the first to assess how myocardial ischemia alters the mitochondrial driving forces and the degree to which individual segments of the mitochondrial energy transduction pathway contribute to diminished function following ischemia. This investigation demonstrates that increased reactive oxygen species production following ischemia is related to a lower effective activity of the electron transport chain and a greater driving force down the electron transport chain.
Assuntos
Isquemia Miocárdica , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Animais , Isquemia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Isquemia Miocárdica/metabolismo , Oxirredutases/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.
Assuntos
Doenças Cardiovasculares , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Técnicas Eletrofisiológicas Cardíacas , Arritmias Cardíacas/etiologia , Miócitos CardíacosRESUMO
Optical mapping is an imaging technique that is extensively used in cardiovascular research, wherein parameter-sensitive fluorescent indicators are used to study the electrophysiology and excitation-contraction coupling of cardiac tissues. Despite many benefits of optical mapping, eliminating motion artifacts within the optical signals is a major challenge, as myocardial contraction interferes with the faithful acquisition of action potentials and intracellular calcium transients. As such, excitation-contraction uncoupling agents are frequently used to reduce signal distortion by suppressing contraction. When compared with other uncoupling agents, blebbistatin is the most frequently used, as it offers increased potency with minimal direct effects on cardiac electrophysiology. Nevertheless, blebbistatin may exert secondary effects on electrical activity, metabolism, and coronary flow, and the incorrect administration of blebbistatin to cardiac tissue can prove detrimental, resulting in erroneous interpretation of optical mapping results. In this "Getting It Right" perspective, we briefly review the literature regarding the use of blebbistatin in cardiac optical mapping experiments, highlight potential secondary effects of blebbistatin on cardiac electrical activity and metabolic demand, and conclude with the consensus of the authors on best practices for effectively using blebbistatin in optical mapping studies of cardiac tissue.
Assuntos
Potenciais de Ação/efeitos dos fármacos , Pesquisa Biomédica , Acoplamento Excitação-Contração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Imagens com Corantes Sensíveis à Voltagem , Animais , Artefatos , Células Cultivadas , Humanos , Miócitos Cardíacos/metabolismo , Fatores de TempoRESUMO
KEY POINTS: The functional roles of the capsaicin receptor, TRPV1, outside of sensory nerves are unclear. We mapped TRPV1 in the mouse circulation, revealing extensive expression in the smooth muscle of resistance arterioles supplying skeletal muscle, heart and adipose tissue. Activation of TRPV1 in vascular myocytes constricted arteries, reduced coronary flow in isolated hearts and increased systemic blood pressure. These functional effects were retained after sensory nerve ablation, indicating specific signalling by arterial TRPV1. TRPV1 mediated the vasoconstrictive and blood pressure responses to the endogenous inflammatory lipid lysophosphatidic acid. These results show that TRPV1 in arteriolar myocytes modulates regional blood flow and systemic blood pressure, and suggest that TRPV1 may be a target of vasoactive inflammatory mediators. ABSTRACT: The capsaicin receptor, TRPV1, is a key ion channel involved in inflammatory pain signalling. Although mainly studied in sensory nerves, there are reports of TRPV1 expression in isolated segments of the vasculature, but whether the channel localizes to vascular endothelium or smooth muscle is controversial and the distribution and functional roles of TRPV1 in arteries remain unknown. We mapped functional TRPV1 expression throughout the mouse arterial circulation. Analysis of reporter mouse lines TRPV1PLAP-nlacZ and TRPV1-Cre:tdTomato combined with Ca2+ imaging revealed specific localization of TRPV1 to smooth muscle of terminal arterioles in the heart, adipose tissue and skeletal muscle. Capsaicin evoked inward currents (current density â¼10% of sensory neurons) and raised intracellular Ca2+ levels in arterial smooth muscle cells, constricted arterioles ex vivo and in vivo and increased systemic blood pressure in mice and rats. Further, capsaicin markedly and dose-dependently reduced coronary flow. Pharmacological and/or genetic disruption of TRPV1 abolished all these effects of capsaicin as well as vasoconstriction triggered by lysophosphatidic acid, a bioactive lipid generated by platelets and atherogenic plaques. Notably, ablation of sensory nerves did not affect the responses to capsaicin revealing a vascular smooth muscle-restricted signalling mechanism. Moreover, unlike in sensory nerves, TRPV1 function in arteries was resistant to activity-induced desensitization. Thus, TRPV1 activation in vascular myocytes enables a persistent depolarizing current, leading to constriction of coronary, skeletal muscle and adipose arterioles and a sustained increase in systemic blood pressure.
Assuntos
Canais de Cátion TRPV , Vasoconstrição , Animais , Artérias , Arteríolas , Pressão Sanguínea , Capsaicina/farmacologia , Camundongos , Ratos , Canais de Cátion TRPV/genéticaRESUMO
BACKGROUND: Left ventricular (LV) electrical maladaptation to increased heart rate in failing myocardium contributes to morbidity and mortality. Recently, cardiac cholinergic neuron activation reduced loss of contractile function resulting from chronic trans-aortic constriction (TAC) in rats. We hypothesized that chronic activation of cardiac cholinergic neurons would also reduce TAC-induced derangement of cardiac electrical activity. METHODS: We investigated electrophysiological rate adaptation in TAC rat hearts with and without daily chemogenetic activation of hypothalamic oxytocin neurons for downstream cardiac cholinergic neuron stimulation. Sprague Dawley rat hearts were excised, perfused, and optically mapped under dynamic pacing after 16 weeks of TAC with or without 12 weeks of daily chemogenetic treatment. Action potential duration (APD60) and conduction velocity (CV) maps were analyzed for regional rate adaptation to dynamic pacing. RESULTS: At lower pacing rates, untreated TAC induced elevated LV epicardial APD60. Fitted APD60 steady state (APDss) was reduced in treated TAC hearts. At higher pacing rates, treatment heterogeneously reduced APD60 compared to untreated TAC hearts. Variance of conduction loss was reduced in treated hearts compared to untreated hearts during fast pacing. However, CV was markedly reduced in both treated and untreated TAC hearts throughout dynamic pacing. At 150msec pacing cycle length, APD60 v. diastolic interval (DI) dispersion was reduced in treated hearts compared to untreated hearts. CONCLUSIONS: Chronic activation of cardiac cholinergic neurons improved electrophysiological adaptation to increases in pacing rate during development of TAC-induced heart failure. This provides insight into the electrophysiological benefits of cholinergic stimulation as a treatment for heart failure patients.
RESUMO
Heart failure (HF) is characterized by autonomic imbalance with sympathetic hyperactivity and loss of parasympathetic tone. Intracardiac ganglia (ICG) neurons represent the final common pathway for vagal innervation of the heart and strongly regulate cardiac functions. This study tests whether ICG cholinergic neuron activation mitigates the progression of cardiac dysfunction and reduces mortality that occurs in HF. HF was induced by transaortic constriction (TAC) in male transgenic Long-Evans rats expressing Cre recombinase within choline acetyltransferase (ChAT) neurons. ChAT neurons were selectively activated by expression and activation of excitatory designer receptors exclusively activated by designer receptors (DREADDs) by clozapine-N-oxide (TAC + treatment and sham-treated groups). Control animals expressed DREADDs but received saline (sham and TAC groups). A separate set of animals were telemetry instrumented to record blood pressure (BP) and heart rate (HR). Acute activation of ICG neurons resulted in robust reductions in BP (â¼20 mmHg) and HR (â¼100 beats/min). All groups of animals were subjected to weekly echocardiography and treadmill stress tests from 3 to 6 wk post-TAC/sham surgery. Activation of ICG cholinergic neurons reduced the left ventricular systolic dysfunction (reductions in ejection fraction, fractional shortening, stroke volume, and cardiac output) and cardiac autonomic dysfunction [reduced HR recovery (HRR) post peak effort] observed in TAC animals. Additionally, activation of ICG ChAT neurons reduced mortality by 30% compared with untreated TAC animals. These data suggest that ICG cholinergic neuron activation reduces cardiac dysfunction and improves survival in HF, indicating that ICG neuron activation could be a novel target for treating HF.NEW & NOTEWORTHY Intracardiac ganglia form the final common pathway for the parasympathetic innervation of the heart. This study has used a novel chemogenetic approach within transgenic ChAT-Cre rats [expressing only Cre-recombinase in choline acetyl transferase (ChAT) neurons] to selectively increase intracardiac cholinergic parasympathetic activity to the heart in a pressure overload-induced heart failure model. The findings from this study confirm that selective activation of intracardiac cholinergic neurons lessens cardiac dysfunction and mortality seen in heart failure, identifying a novel downstream cardiac-selective target for increasing cardioprotective parasympathetic activity in heart failure.
Assuntos
Neurônios Colinérgicos/fisiologia , Insuficiência Cardíaca/fisiopatologia , Coração/inervação , Função Ventricular , Animais , Sistema Nervoso Autônomo/fisiopatologia , Pressão Sanguínea , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacologia , Coração/fisiopatologia , Insuficiência Cardíaca/etiologia , Frequência Cardíaca , Masculino , Ratos , Ratos Long-Evans , Obstrução do Fluxo Ventricular Externo/complicaçõesAssuntos
Matriz Extracelular , Infarto do Miocárdio , Regeneração Nervosa , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Animais , Matriz Extracelular/metabolismo , Nervos Periféricos/fisiopatologia , Nervos Periféricos/metabolismo , Modelos Animais de Doenças , CamundongosRESUMO
KEY POINTS: The present study demonstrates, by in vitro and in vivo analyses, the novel concept that signal transmission between sympathetic neurons and the heart, underlying the physiological regulation of cardiac function, operates in a quasi-synaptic fashion. This is a result of the direct coupling between neurotransmitter releasing sites and effector cardiomyocyte membranes. ABSTRACT: Cardiac sympathetic neurons (SNs) finely tune the rate and strength of heart contractions to match blood demand, both at rest and during acute stress, through the release of noradrenaline (NE). Junctional sites at the interface between the two cell types have been observed, although whether direct neurocardiac coupling has a role in heart physiology has not been clearly demonstrated to date. We investigated the dynamics of SN/cardiomyocyte intercellular signalling, both by fluorescence resonance energy transfer-based imaging of cAMP in co-cultures, as a readout of cardiac ß-adrenergic receptor activation, and in vivo, using optogenetics in transgenic mice with SN-specific expression of Channelrhodopsin-2. We demonstrate that SNs and cardiomyocytes interact at specific sites in the human and rodent heart, as well as in co-cultures. Accordingly, neuronal activation elicited intracellular cAMP increases only in directly contacted myocytes and cell-cell coupling utilized a junctional extracellular signalling domain with an elevated NE concentration. In the living mouse, optogenetic activation of cardiac SNs innervating the sino-atrial node resulted in an instantaneous chronotropic effect, which shortened the heartbeat interval with single beat precision. Remarkably, inhibition of the optogenetically elicited chronotropic responses required a high dose of propranolol (20-50 mg kg-1 ), suggesting that sympathetic neurotransmission in the heart occurs at a locally elevated NE concentration. Our in vitro and in vivo data suggest that the control of cardiac function by SNs occurs via direct intercellular coupling as a result of the establishment of a specific junctional site.
Assuntos
Débito Cardíaco , Miócitos Cardíacos/fisiologia , Neurônios/fisiologia , Sistema Nervoso Simpático/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Animais , Comunicação Celular , Células Cultivadas , Técnicas de Cocultura , Frequência Cardíaca , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Neurônios/citologia , Norepinefrina/metabolismo , Optogenética , Ratos , Ratos Sprague-DawleyRESUMO
The left ventricular working, crystalloid-perfused heart is used extensively to evaluate basic cardiac function, pathophysiology, and pharmacology. Crystalloid-perfused hearts may be limited by oxygen delivery, as adding oxygen carriers increases myoglobin oxygenation and improves myocardial function. However, whether decreased myoglobin oxygen saturation impacts oxidative phosphorylation (OxPhos) is unresolved, since myoglobin has a much lower affinity for oxygen than cytochrome c oxidase (COX). In the present study, a laboratory-based synthesis of an affordable perfluorocarbon (PFC) emulsion was developed to increase perfusate oxygen carrying capacity without impeding optical absorbance assessments. In left ventricular working hearts, along with conventional measurements of cardiac function and metabolic rate, myoglobin oxygenation and cytochrome redox state were monitored using a novel transmural illumination approach. Hearts were perfused with Krebs-Henseleit (KH) or KH supplemented with PFC, increasing perfusate oxygen carrying capacity by 3.6-fold. In KH-perfused hearts, myoglobin was deoxygenated, consistent with cytoplasmic hypoxia, and the mitochondrial cytochromes, including COX, exhibited a high reduction state, consistent with OxPhos hypoxia. PFC perfusate increased aortic output from 76 ± 6 to 142 ± 4 ml/min and increased oxygen consumption while also increasing myoglobin oxygenation and oxidizing the mitochondrial cytochromes. These results are consistent with limited delivery of oxygen to OxPhos resulting in an adapted lower cardiac performance with KH. Consistent with this, PFCs increased myocardial oxygenation, and cardiac work was higher over a wider range of perfusate Po2. In summary, heart mitochondria are limited by oxygen delivery with KH; supplementation of KH with PFC reverses mitochondrial hypoxia and improves cardiac performance, creating a more physiological tissue oxygen delivery. NEW & NOTEWORTHY Optical absorbance spectroscopy of intrinsic chromophores reveals that the commonly used crystalloid-perfused working heart is oxygen limited for oxidative phosphorylation and associated cardiac work. Oxygen-carrying perfluorocarbons increase myocardial oxygen delivery and improve cardiac function, providing a more physiological mitochondrial redox state and emphasizing cardiac work is modulated by myocardial oxygen delivery.
Assuntos
Soluções Cristaloides/farmacologia , Fluorocarbonos/farmacologia , Coração/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Oxigênio/metabolismo , Perfusão/métodos , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Soluções Cristaloides/síntese química , Citocromos c/metabolismo , Emulsões , Fluorocarbonos/síntese química , Glucose/farmacologia , Coração/fisiologia , Preparação de Coração Isolado , Mitocôndrias Cardíacas/metabolismo , Mioglobina/metabolismo , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Coelhos , Trometamina/farmacologiaRESUMO
Transplantation studies in mice and rats have shown that human embryonic-stem-cell-derived cardiomyocytes (hESC-CMs) can improve the function of infarcted hearts, but two critical issues related to their electrophysiological behaviour in vivo remain unresolved. First, the risk of arrhythmias following hESC-CM transplantation in injured hearts has not been determined. Second, the electromechanical integration of hESC-CMs in injured hearts has not been demonstrated, so it is unclear whether these cells improve contractile function directly through addition of new force-generating units. Here we use a guinea-pig model to show that hESC-CM grafts in injured hearts protect against arrhythmias and can contract synchronously with host muscle. Injured hearts with hESC-CM grafts show improved mechanical function and a significantly reduced incidence of both spontaneous and induced ventricular tachycardia. To assess the activity of hESC-CM grafts in vivo, we transplanted hESC-CMs expressing the genetically encoded calcium sensor, GCaMP3 (refs 4, 5). By correlating the GCaMP3 fluorescent signal with the host ECG, we found that grafts in uninjured hearts have consistent 1:1 hostgraft coupling. Grafts in injured hearts are more heterogeneous and typically include both coupled and uncoupled regions. Thus, human myocardial grafts meet physiological criteria for true heart regeneration, providing support for the continued development of hESC-based cardiac therapies for both mechanical and electrical repair.
Assuntos
Arritmias Cardíacas/terapia , Fenômenos Eletrofisiológicos , Células-Tronco Embrionárias/citologia , Traumatismos Cardíacos/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/transplante , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Cálcio/análise , Cálcio/metabolismo , Estimulação Elétrica , Corantes Fluorescentes/análise , Cobaias , Traumatismos Cardíacos/complicações , Traumatismos Cardíacos/patologia , Humanos , Medições Luminescentes , Masculino , Contração Miocárdica/fisiologia , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/terapiaRESUMO
KEY POINTS: Heart function is critically dependent upon the balance of energy production and utilization. Sarcolemmal ATP-sensitive potassium channels (KATP channels) in cardiac myocytes adjust contractile function to compensate for the level of available energy. Understanding the activation of KATP channels in working myocardium during high-stress situations is crucial to the treatment of cardiovascular disease, especially ischaemic heart disease. Using a new optical mapping approach, we measured action potentials from the surface of excised contracting rabbit hearts to assess when sarcolemmal KATP channels were activated during physiologically relevant workloads and during gradual reductions in myocardial oxygenation. We demonstrate that left ventricular pressure is closely linked to KATP channel activation and that KATP channel inhibition with a low concentration of tolbutamide prevents electromechanical decline when oxygen availability is reduced. As a result, KATP channel inhibition probably exacerbates a mismatch between energy demand and energy production when myocardial oxygenation is low. ABSTRACT: Sarcolemmal ATP-sensitive potassium channel (KATP channel) activation in isolated cells is generally understood, although the relationship between myocardial oxygenation and KATP activation in excised working rabbit hearts remains unknown. We optically mapped action potentials (APs) in excised rabbit hearts to test the hypothesis that hypoxic changes would be more severe in left ventricular (LV) working hearts (LWHs) than Langendorff (LANG) perfused hearts. We further hypothesized that KATP inhibition would prevent those changes. Optical APs were mapped when measuring LV developed pressure (LVDP), coronary flow rate and oxygen consumption in LANG and LWHs. Hearts were paced to increase workload and perfusate was deoxygenated to study the effects of myocardial hypoxia. A subset of hearts was perfused with 1 µm tolbutamide (TOLB) to identify the level of AP duration (APD) shortening attributed to KATP channel activation. During sinus rhythm, APD was shorter in LWHs compared to LANG hearts. APD in both LWHs and LANG hearts dropped steadily during deoxygenation. With TOLB, APDs in LWHs were longer at all workloads and APD reductions during deoxygenation were blunted in both LWHs and LANG hearts. At 50% perfusate oxygenation, APD and LVDP were significantly higher in LWHs perfused with TOLB (199 ± 16 ms; 92 ± 5.3 mmHg) than in LWHs without TOLB (109 ± 14 ms, P = 0.005; 65 ± 6.5 mmHg, P = 0.01). Our results indicate that KATP channels are activated to a greater extent in perfused hearts when the LV performs pressure-volume work. The results of the present study demonstrate the critical role of KATP channels in modulating myocardial function over a wide range of physiological conditions.
Assuntos
Potenciais de Ação/fisiologia , Coração/fisiopatologia , Hipóxia/metabolismo , Canais KATP/antagonistas & inibidores , Canais KATP/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda/fisiologia , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Hipóxia/fisiopatologia , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Coelhos , Fluxo Sanguíneo Regional/fisiologiaRESUMO
Activation of oxytocin receptors has shown benefits in animal models of obstructive sleep apnea (OSA). We tested if nocturnal oxytocin administration could have beneficial effects in OSA patients. Eight patients diagnosed with OSA were administered intranasal oxytocin (40 IU). Changes in cardiorespiratory events during sleep, including apnea and hypopnea durations and frequency, risk of event-associated arousals, and heart rate variability, were assessed. Oxytocin significantly increased indexes of parasympathetic activity, including heart rate variability, total sleep time, and the postpolysommogram sleep assessment score, an index of self-reported sleep satisfaction. Although the apnea-hypopnea index was not significantly changed with oxytocin administration, when apnea and hypopnea events were compared independently, the frequency of hypopneas, but not apneas, was significantly (P ≤ 0.005) decreased with oxytocin treatment. Both apneas and hypopneas were significantly shortened in duration with oxytocin treatment. Oxytocin treatment significantly decreased the percent of apnea and hypopnea events that were accompanied with an arousal. Oxytocin administration has the potential to restore cardiorespiratory homeostasis and reduce some clinically important (objective and patient-reported) adverse events that occur with OSA. Additional studies are needed to further understand the mechanisms by which oxytocin promotes these changes in cardiorespiratory and autonomic function in OSA patients.
Assuntos
Nível de Alerta/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Ocitocina/farmacologia , Apneia Obstrutiva do Sono/tratamento farmacológico , Adolescente , Adulto , Encéfalo/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ocitocina/administração & dosagem , Apneia Obstrutiva do Sono/fisiopatologia , Adulto JovemRESUMO
Here, we describe new detachable floating glass micropipette electrode devices that provide targeted action potential recordings in active moving organs without requiring constant mechanical constraint or pharmacological inhibition of tissue motion. The technology is based on the concept of a glass micropipette electrode that is held firmly during cell targeting and intracellular insertion, after which a 100-µg glass microelectrode, a "microdevice," is gently released to remain within the moving organ. The microdevices provide long-term recordings of action potentials, even during millimeter-scale movement of tissue in which the device is embedded. We demonstrate two different glass micropipette electrode holding and detachment designs appropriate for the heart (sharp glass microdevices for cardiac myocytes in rats, guinea pigs, and humans) and the brain (patch glass microdevices for neurons in rats). We explain how microdevices enable measurements of multiple cells within a moving organ that are typically difficult with other technologies. Using sharp microdevices, action potential duration was monitored continuously for 15 min in unconstrained perfused hearts during global ischemia-reperfusion, providing beat-to-beat measurements of changes in action potential duration. Action potentials from neurons in the hippocampus of anesthetized rats were measured with patch microdevices, which provided stable base potentials during long-term recordings. Our results demonstrate that detachable microdevices are an elegant and robust tool to record electrical activity with high temporal resolution and cellular level localization without disturbing the physiological working conditions of the organ.NEW & NOTEWORTHY Cellular action potential measurements within tissue using glass micropipette electrodes usually require tissue immobilization, potentially influencing the physiological relevance of the measurement. Here, we addressed this limitation with novel 100-µg detachable glass microelectrodes that can be precisely positioned to provide long-term measurements of action potential duration during unconstrained tissue movement.
Assuntos
Potenciais de Ação , Microeletrodos , Movimento , Miócitos Cardíacos/fisiologia , Neurônios/fisiologia , Técnicas de Patch-Clamp/instrumentação , Animais , Desenho de Equipamento , Cobaias , Humanos , Miniaturização , Ratos Sprague-Dawley , Fatores de TempoRESUMO
Absorbance spectroscopy of intrinsic cardiac chromophores provides nondestructive assessment of cytosolic oxygenation and mitochondria redox state. Isolated perfused heart spectroscopy is usually conducted by collecting reflected light from the heart surface, which represents a combination of surface scattering events and light that traversed portions of the myocardium. Reflectance spectroscopy with complex surface scattering effects in the beating heart leads to difficulty in quantitating chromophore absorbance. In this study, surface scattering was minimized and transmural path length optimized by placing a light source within the left ventricular chamber while monitoring transmurally transmitted light at the epicardial surface. The custom-designed intrachamber light catheter was a flexible coaxial cable (2.42-Fr) terminated with an encapsulated side-firing LED of 1.8 × 0.8 mm, altogether similar in size to a Millar pressure catheter. The LED catheter had minimal impact on aortic flow and heart rate in Langendorff perfusion and did not impact stability of the left ventricule of the working heart. Changes in transmural absorbance spectra were deconvoluted using a library of chromophore reference spectra to quantify the relative contribution of specific chromophores to the changes in measured absorbance. This broad-band spectral deconvolution approach eliminated errors that may result from simple dual-wavelength absorbance intensity. The myoglobin oxygenation level was only 82.2 ± 3.0%, whereas cytochrome c and cytochrome a + a3 were 13.3 ± 1.4% and 12.6 ± 2.2% reduced, respectively, in the Langendorff-perfused heart. The intracardiac illumination strategy permits transmural optical absorbance spectroscopy in perfused hearts, which provides a noninvasive real-time monitor of cytosolic oxygenation and mitochondria redox state.NEW & NOTEWORTHY Here, a novel nondestructive real-time approach for monitoring intrinsic indicators of cardiac metabolism and oxygenation is described using a catheter-based transillumination of the left ventricular free wall together with complete spectral analysis of transmitted light. This approach is a significant improvement in the quality of cardiac optical absorbance spectroscopic metabolic analyses.
Assuntos
Ventrículos do Coração/metabolismo , Preparação de Coração Isolado/métodos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Mioglobina/metabolismo , Oxigênio/metabolismo , Perfusão , Animais , Feminino , Luz , Masculino , Oxirredução , Coelhos , Espalhamento de Radiação , Análise Espectral/métodos , Fatores de Tempo , Função Ventricular EsquerdaRESUMO
Dichloroacetate (DCA) and pyruvate activate pyruvate dehydrogenase (PDH), a key enzyme that modulates glucose oxidation and mitochondrial NADH production. Both compounds improve recovery after ischemia in isolated hearts. However, the action of DCA and pyruvate in normoxic myocardium is incompletely understood. We measured the effect of DCA and pyruvate on contraction, mitochondrial redox state, and intracellular calcium cycling in isolated rat hearts during normoxic perfusion. Normalized epicardial NADH fluorescence (nNADH) and left ventricular developed pressure (LVDP) were measured before and after administering DCA (5 mM) or pyruvate (5 mM). Optical mapping of Rhod-2AM was used to measure cytosolic calcium kinetics. DCA maximally activated PDH, increasing the ratio of active to total PDH from 0.48 ± 0.03 to 1.03 ± 0.03. Pyruvate sub-maximally activated PDH to a ratio of 0.75 ± 0.02. DCA and pyruvate increased LVDP. When glucose was the only exogenous fuel, pyruvate increased nNADH by 21.4 ± 2.9 % while DCA reduced nNADH by 21.4 ± 6.1 % and elevated the incidence of premature ventricular contractions (PVCs). When lactate, pyruvate, and glucose were provided together as exogenous fuels, nNADH increased with DCA, indicating that PDH activation with glucose as the only exogenous fuel depletes PDH substrate. Calcium transient time-to-peak was shortened by DCA and pyruvate and SR calcium re-uptake was 30 % longer. DCA and pyruvate increased SR calcium load in myocyte monolayers. Overall, during normoxia when glucose is the only exogenous fuel, DCA elevates SR calcium, increases LVDP and contractility, and diminishes mitochondrial NADH. Administering DCA with plasma levels of lactate and pyruvate mitigates the drop in mitochondrial NADH and prevents PVCs.