RESUMO
MOTIVATION: Robust and reproducible data is essential to ensure high-quality analytical results and is particularly important for large-scale metabolomics studies where detector sensitivity drifts, retention time and mass accuracy shifts frequently occur. Therefore, raw data need to be inspected before data processing to detect measurement bias and verify system consistency. RESULTS: Here, we present RawHummus, an R Shiny app for an automated raw data quality control (QC) in metabolomics studies. It produces a comprehensive QC report, which contains interactive plots and tables, summary statistics and detailed explanations. The versatility and limitations of RawHummus are tested with 13 metabolomics/lipidomics datasets and 1 proteomics dataset obtained from 5 different liquid chromatography mass spectrometry platforms. AVAILABILITY AND IMPLEMENTATION: RawHummus is released on CRAN repository (https://cran.r-project.org/web/packages/RawHummus), with source code being available on GitHub (https://github.com/YonghuiDong/RawHummus). The web application can be executed locally from the R console using the command 'runGui()'. Alternatively, it can be freely accessed at https://bcdd.shinyapps.io/RawHummus/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Aplicativos Móveis , Software , Metabolômica , Espectrometria de Massas , Lipidômica , Controle de QualidadeRESUMO
Plant adaptation to a desert environment and its endemic heat stress is poorly understood at the molecular level. The naturally heat-tolerant Brassicaceae species Anastatica hierochuntica is an ideal extremophyte model to identify genetic adaptations that have evolved to allow plants to tolerate heat stress and thrive in deserts. We generated an A. hierochuntica reference transcriptome and identified extremophyte adaptations by comparing Arabidopsis thaliana and A. hierochuntica transcriptome responses to heat, and detecting positively selected genes in A. hierochuntica. The two species exhibit similar transcriptome adjustment in response to heat and the A. hierochuntica transcriptome does not exist in a constitutive heat 'stress-ready' state. Furthermore, the A. hierochuntica global transcriptome as well as heat-responsive orthologs, display a lower basal and higher heat-induced expression than in A. thaliana. Genes positively selected in multiple extremophytes are associated with stomatal opening, nutrient acquisition, and UV-B induced DNA repair while those unique to A. hierochuntica are consistent with its photoperiod-insensitive, early-flowering phenotype. We suggest that evolution of a flexible transcriptome confers the ability to quickly react to extreme diurnal temperature fluctuations characteristic of a desert environment while positive selection of genes involved in stress tolerance and early flowering could facilitate an opportunistic desert lifestyle.
Assuntos
Arabidopsis , Brassicaceae , Aclimatação , Adaptação Fisiológica/genética , Arabidopsis/genética , Brassicaceae/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma/genéticaRESUMO
Solanum steroidal glycoalkaloids (SGAs) are renowned defence metabolites exhibiting spectacular structural diversity. Genes and enzymes generating the SGA precursor pathway, SGA scaffold and glycosylated forms have been largely identified. Yet, the majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGA metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyses the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulate habrochaitosides. These habrochaitoside enriched plants extracts potently inhibit Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, nonbitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyses hydroxytomatine formation, we find that GAME40 catalyses the penultimate step in the pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.
Assuntos
Alcaloides , Dioxigenases , Solanum lycopersicum , Solanum tuberosum , Solanum , Alcaloides/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Solanum lycopersicum/genética , Solanum/genética , Solanum/metabolismo , Solanum tuberosum/genéticaRESUMO
Steroidal glycoalkaloids (SGAs) are protective metabolites constitutively produced by Solanaceae species. Genes and enzymes generating the vast structural diversity of SGAs have been largely identified. Yet, mechanisms of hormone pathways coordinating defence (jasmonate; JA) and growth (gibberellin; GA) controlling SGAs metabolism remain unclear. We used tomato to decipher the hormonal regulation of SGAs metabolism during growth vs defence tradeoff. This was performed by genetic and biochemical characterisation of different JA and GA pathways components, coupled with in vitro experiments to elucidate the crosstalk between these hormone pathways mediating SGAs metabolism. We discovered that reduced active JA results in decreased SGA production, while low levels of GA or its receptor led to elevated SGA accumulation. We showed that MYC1 and MYC2 transcription factors mediate the JA/GA crosstalk by transcriptional activation of SGA biosynthesis and GA catabolism genes. Furthermore, MYC1 and MYC2 transcriptionally regulate the GA signalling suppressor DELLA that by itself interferes in JA-mediated SGA control by modulating MYC activity through protein-protein interaction. Chemical and fungal pathogen treatments reinforced the concept of JA/GA crosstalk during SGA metabolism. These findings revealed the mechanism of JA/GA interplay in SGA biosynthesis to balance the cost of chemical defence with growth.
Assuntos
Alcaloides , Solanum lycopersicum , Alcaloides/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Solanum lycopersicum/metabolismo , Oxilipinas/metabolismoRESUMO
Plants are unsurpassed biochemists that synthesize a plethora of molecules in response to an ever-changing environment. The majority of these molecules, considered as specialized metabolites, effectively protect the plant against pathogens and herbivores. However, this defense most probably comes at a great expense, leading to reduction of growth (known as the 'growth-defense trade-off'). Plants employ several strategies to reduce the high metabolic costs associated with chemical defense. Production of specialized metabolites is tightly regulated by a network of transcription factors facilitating its fine-tuning in time and space. Multifunctionality of specialized metabolites-their effective recycling system by re-using carbon, nitrogen, and sulfur, thus re-introducing them back to the primary metabolite pool-allows further cost reduction. Spatial separation of biosynthetic enzymes and their substrates, and sequestration of potentially toxic substances and conversion to less toxic metabolite forms are the plant's solutions to avoid the detrimental effects of metabolites they produce as well as to reduce production costs. Constant fitness pressure from herbivores, pathogens, and abiotic stressors leads to honing of specialized metabolite biosynthesis reactions to be timely, efficient, and metabolically cost-effective. In this review, we assess the costs of production of specialized metabolites for chemical defense and the different plant mechanisms to reduce the cost of such metabolic activity in terms of self-toxicity and growth.
Assuntos
Herbivoria , PlantasAssuntos
Malus , Proteínas de Membrana Transportadoras , Proteínas de Plantas , Carboidratos , Malus/metabolismo , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteínas de Membrana Transportadoras/metabolismo , Rizosfera , Açúcares/metabolismo , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismoRESUMO
Halophytes are able to thrive in salt concentrations that would kill 99% of other plant species, and identifying their salt-adaptive mechanisms has great potential for improving the tolerance of crop plants to salinized soils. Much research has focused on the physiological basis of halophyte salt tolerance, whereas the elucidation of molecular mechanisms has traditionally lagged behind due to the absence of a model halophyte system. However, over the last decade and a half, two Arabidopsis (Arabidopsis thaliana) relatives, Eutrema salsugineum and Schrenkiella parvula, have been established as transformation-competent models with various genetic resources including high-quality genome assemblies. These models have facilitated powerful comparative analyses with salt-sensitive Arabidopsis to unravel the genetic adaptations that enable a halophytic lifestyle. The aim of this review is to explore what has been learned about halophytism using E. salsugineum and S. parvula We consider evidence from physiological and molecular studies suggesting that differences in salt tolerance between related halophytes and salt-sensitive plants are associated with alterations in the regulation of basic physiological, biochemical, and molecular processes. Furthermore, we discuss how salt tolerance mechanisms of the halophytic models are reflected at the level of their genomes, where evolutionary processes such as subfunctionalization and/or neofunctionalization have altered the expression and/or functions of genes to facilitate adaptation to saline conditions. Lastly, we summarize the many areas of research still to be addressed with E. salsugineum and S. parvula as well as obstacles hindering further progress in understanding halophytism.
Assuntos
Adaptação Fisiológica , Brassicaceae/fisiologia , Plantas Tolerantes a Sal/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Brassicaceae/genética , Genômica , Modelos Biológicos , Tolerância ao Sal , Plantas Tolerantes a Sal/genética , Cloreto de Sódio/metabolismoRESUMO
Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.
Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Brassicaceae/crescimento & desenvolvimento , Brassicaceae/metabolismo , Plantas Tolerantes a Sal/fisiologia , Estresse Fisiológico , Adaptação Fisiológica , Arabidopsis/fisiologia , Brassicaceae/fisiologia , Tamanho Celular , Fumaratos/metabolismo , Malatos/metabolismo , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Rafinose/metabolismo , Tolerância ao Sal , Solo , Especificidade da EspécieRESUMO
N-hydroxy pipecolic acid (NHP) plays an important role in plant immunity. In contrast to its biosynthesis, our current knowledge with respect to the transcriptional regulation of the NHP pathway is limited. This study commences with the engineering of Arabidopsis plants that constitutively produce high NHP levels and display enhanced immunity. Label-free proteomics reveals a NAC-type transcription factor (NAC90) that is strongly induced in these plants. We find that NAC90 is a target gene of SAR DEFICIENT 1 (SARD1) and induced by pathogen, salicylic acid (SA), and NHP. NAC90 knockout mutants exhibit constitutive immune activation, earlier senescence, higher levels of NHP and SA, as well as increased expression of NHP and SA biosynthetic genes. In contrast, NAC90 overexpression lines are compromised in disease resistance and accumulated reduced levels of NHP and SA. NAC90 could interact with NAC61 and NAC36 which are also induced by pathogen, SA, and NHP. We next discover that this protein triad directly represses expression of the NHP and SA biosynthetic genes AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1), FLAVIN MONOOXYGENASE 1 (FMO1), and ISOCHORISMATE SYNTHASE 1 (ICS1). Constitutive immune response in nac90 is abolished once blocking NHP biosynthesis in the fmo1 background, signifying that NAC90 negative regulation of immunity is mediated via NHP biosynthesis. Our findings expand the currently documented NHP regulatory network suggesting a model that together with NHP glycosylation, NAC repressors take part in a 'gas-and-brake' transcriptional mechanism to control NHP production and the plant growth and defense trade-off.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Ácidos Pipecólicos , Imunidade Vegetal , Ácido Salicílico , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Ácidos Pipecólicos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , Ácido Salicílico/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Proteômica/métodosRESUMO
Seeds in the seed bank experience diurnal cycles of imbibition followed by complete dehydration. These conditions pose a challenge to the regulation of germination. The effect of recurring hydration-dehydration (Hy-Dh) cycles were tested on seeds from four Arabidopsis thaliana accessions [Col-0, Cvi, C24 and Ler]. Diurnal Hy-Dh cycles had a detrimental effect on the germination rate and on the final percentage of germination in Col-0, Cvi and C24 ecotypes, but not in the Ler ecotype, which showed improved vigor following the treatments. Membrane permeability measured by ion conductivity was generally increased following each Hy-Dh cycle and was correlated with changes in the redox status represented by the GSSG/GSH (oxidized/reduced glutathione) ratio. Among the ecotypes, Col-0 seeds displayed the highest membrane permeability, whilst Ler was characterized by the greatest increase in electrical conductivity following Hy-Dh cycles. Following Dh 2 and Dh 3, the respiratory activity of Ler seeds significantly increased, in contrast to the other ecotypes, indicative of a dramatic shift in metabolism. These differences were associated with accession-specific content and patterns of change of (i) cell wall-related laminaribiose and mannose; (ii) fatty acid composition, specifically of the unsaturated oleic acid and α-linoleic acid; and (iii) asparagine, ornithine and the related polyamine putrescine. Furthermore, in the Ler ecotype the content of the tricarboxylic acid (TCA) cycle intermediates fumarate, succinate and malate increased in response to dehydration, in contrast to a decrease in the other three ecotypes. These findings provide a link between seed respiration, energy metabolism, fatty acid ß-oxidation, nitrogen mobilization and membrane permeability and the improved germination of Ler seeds following Hy-Dh cycles.
Assuntos
Arabidopsis/embriologia , Arabidopsis/fisiologia , Ritmo Circadiano/fisiologia , Ecótipo , Sementes/metabolismo , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Ciclo do Ácido Cítrico , Desidratação , Condutividade Elétrica , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Germinação/fisiologia , Dissulfeto de Glutationa/metabolismo , Glicólise , Metabolismo dos Lipídeos , Modelos Biológicos , Oxirredução , Análise de Componente Principal , Sementes/citologiaRESUMO
Suberized and/or lignified (i.e. lignosuberized) periderm tissue appears often on surface of fleshy fruit skin by mechanical damage caused following environmental cues or developmental programs. The mechanisms underlying lignosuberization remain largely unknown to date. Here, we combined an assortment of microscopical techniques with an integrative multi-omics approach comprising proteomics, metabolomics and lipidomics to identify novel molecular components involved in fruit skin lignosuberization. We chose to investigate the corky Sikkim cucumber (Cucumis sativus var. sikkimensis) fruit. During development, the skin of this unique species undergoes massive cracking and is coated with a thick corky layer, making it an excellent model system for revealing fundamental cellular machineries involved in fruit skin lignosuberization. The large-scale data generated provides a significant source for the field of skin periderm tissue formation in fleshy fruit and suberin metabolism.
RESUMO
Fruit taste is determined by sugars, acids and in some species, bitter chemicals. Attraction of seed-dispersing organisms in nature and breeding for consumer preferences requires reduced fruit bitterness. A key metabolic shift during ripening prevents tomato fruit bitterness by eliminating α-tomatine, a renowned defence-associated Solanum alkaloid. Here, we combined fine mapping with information from 150 resequenced genomes and genotyping a 650-tomato core collection to identify nine bitter-tasting accessions including the 'high tomatine' Peruvian landraces reported in the literature. These 'bitter' accessions contain a deletion in GORKY, a nitrate/peptide family transporter mediating α-tomatine subcellular localization during fruit ripening. GORKY exports α-tomatine and its derivatives from the vacuole to the cytosol and this facilitates the conversion of the entire α-tomatine pool to non-bitter forms, rendering the fruit palatable. Hence, GORKY activity was a notable innovation in the process of tomato fruit domestication and breeding.
Assuntos
Frutas/química , Proteínas de Plantas/genética , Solanum lycopersicum/química , Solanum lycopersicum/genética , Paladar , Frutas/genética , Humanos , Solanum lycopersicum/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismoRESUMO
The genus Solanum comprises three food crops (potato, tomato, and eggplant), which are consumed on daily basis worldwide and also producers of notorious anti-nutritional steroidal glycoalkaloids (SGAs). Hydroxylated SGAs (i.e. leptinines) serve as precursors for leptines that act as defenses against Colorado Potato Beetle (Leptinotarsa decemlineata Say), an important pest of potato worldwide. However, SGA hydroxylating enzymes remain unknown. Here, we discover that 2-OXOGLUTARATE-DEPENDENT-DIOXYGENASE (2-ODD) enzymes catalyze SGA-hydroxylation across various Solanum species. In contrast to cultivated potato, Solanum chacoense, a widespread wild potato species, has evolved a 2-ODD enzyme leading to the formation of leptinines. Furthermore, we find a related 2-ODD in tomato that catalyzes the hydroxylation of the bitter α-tomatine to hydroxytomatine, the first committed step in the chemical shift towards downstream ripening-associated non-bitter SGAs (e.g. esculeoside A). This 2-ODD enzyme prevents bitterness in ripe tomato fruit consumed today which otherwise would remain unpleasant in taste and more toxic.
Assuntos
Dioxigenases/metabolismo , Frutas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Metaboloma , Solanum/metabolismo , Paladar , Alcaloides/química , Alcaloides/metabolismo , Biocatálise , Genes de Plantas , Hidroxilação , Ácidos Cetoglutáricos/química , Locos de Características Quantitativas/genética , Solanum/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Esteroides/química , Esteroides/metabolismoRESUMO
The search for novel stress tolerance determinants has led to increasing interest in plants native to extreme environments - so called "extremophytes." One successful strategy has been comparative studies between Arabidopsis thaliana and extremophyte Brassicaceae relatives such as the halophyte Eutrema salsugineum located in areas including cold, salty coastal regions of China. Here, we investigate stress tolerance in the desert species, Anastatica hierochuntica (True Rose of Jericho), a member of the poorly investigated lineage III Brassicaceae. We show that A. hierochuntica has a genome approximately 4.5-fold larger than Arabidopsis, divided into 22 diploid chromosomes, and demonstrate that A. hierochuntica exhibits tolerance to heat, low N and salt stresses that are characteristic of its habitat. Taking salt tolerance as a case study, we show that A. hierochuntica shares common salt tolerance mechanisms with E. salsugineum such as tight control of shoot Na+ accumulation and resilient photochemistry features. Furthermore, metabolic profiling of E. salsugineum and A. hierochuntica shoots demonstrates that the extremophytes exhibit both species-specific and common metabolic strategies to cope with salt stress including constitutive up-regulation (under control and salt stress conditions) of ascorbate and dehydroascorbate, two metabolites involved in ROS scavenging. Accordingly, A. hierochuntica displays tolerance to methyl viologen-induced oxidative stress suggesting that a highly active antioxidant system is essential to cope with multiple abiotic stresses. We suggest that A. hierochuntica presents an excellent extremophyte Arabidopsis relative model system for understanding plant survival in harsh desert conditions.
RESUMO
The salinization of land is a major factor limiting crop production worldwide. Halophytes adapted to high levels of salinity are likely to possess useful genes for improving crop tolerance to salt stress. In addition, halophytes could provide a food source on marginal lands. However, despite halophytes being salt-tolerant plants, the seeds of several halophytic species will not germinate on saline soils. Yet, little is understood regarding biochemical and gene expression changes underlying salt-mediated inhibition of halophyte seed germination. We have used the halophytic Arabidopsis relative model system, Eutrema (Thellungiella) salsugineum to explore salt-mediated inhibition of germination. We show that E. salsugineum seed germination is inhibited by salt to a far greater extent than in Arabidopsis, and that this inhibition is in response to the osmotic component of salt exposure. E. salsugineum seeds remain viable even when germination is completely inhibited, and germination resumes once seeds are transferred to non-saline conditions. Moreover, removal of the seed coat from salt-treated seeds allows embryos to germinate on salt-containing medium. Mobilization of seed storage reserves is restricted in salt-treated seeds, while many germination-associated metabolic changes are arrested or progress to a lower extent. Salt-exposed seeds are further characterized by a reduced GA/ABA ratio and increased expression of the germination repressor genes, RGL2, ABI5, and DOG1. Furthermore, a salt-mediated increase in expression of a LATE EMBRYOGENESIS ABUNDANT gene and accretion of metabolites involved in osmoprotection indicates induction of processes associated with stress tolerance, and accumulation of easily mobilized carbon reserves. Overall, our results suggest that salt inhibits E. salsugineum seed germination by inducing a seed state with molecular features of dormancy while a physical constraint to radicle emergence is provided by the seed coat layers. This seed state could facilitate survival on saline soils until a rain event(s) increases soil water potential indicating favorable conditions for seed germination and establishment of salt-tolerant E. salsugineum seedlings.