Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39124103

RESUMO

The microstrip devices based on multimode resonators represent a class of electromagnetic microwave devices, promising use in tropospheric communication, radar, and navigation systems. The design of wideband bandpass filters, diplexers, and multiplexers with required frequency-selective properties, i.e., bandpass filters, is a complex problem, as electrodynamic modeling is a time-consuming and computationally intensive process. Various planar microstrip resonator topologies can be developed, differing in their topology type, and the search for high-quality structures with unique frequency-selective properties is an important research direction. In this study, we propose an approach for performing an automated search for multimode resonators' conductor topology parameters using a combination of evolutionary computation approach and surrogate modeling. In particular, a variant of differential evolution optimizer is applied, and the model of the target function landscape is built using Gaussian processes. At every iteration of the algorithm, the model is used to search for new high-quality solutions. In addition, a general approach for target function formulation is presented and applied in the proposed approach. The experiments with two microwave filters have demonstrated that the proposed algorithm is capable of solving the problem of tuning two types of topologies, namely three-mode resonators and six-mode resonators, to the required parameters, and the application of surrogated-assisted algorithm has significantly improved overall performance.

2.
Sensors (Basel) ; 22(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35271118

RESUMO

Microwave electromagnetic devices have been used for many applications in tropospheric communication, navigation, radar systems, and measurement. The development of the signal preprocessing units including frequency-selective devices (bandpass filters) determines the reliability and usability of such systems. In wireless sensor network nodes, filters with microstrip resonators are widely used to improve the out-of-band suppression and frequency selectivity. Filters based on multimode microstrip resonators have an order that determines their frequency-selective properties, which is a multiple of the number of resonators. That enables us to reduce the size of systems without deteriorating their selective properties. Various microstrip multimode resonator topologies can be used for both filters and microwave sensors, however, the quality criteria for them may differ. The development of every resonator topology is time consuming. We propose a technique for the automatic generation of the resonator topology with required frequency characteristics based on the use of evolutionary algorithms. The topology is encoded into a set of real valued parameters, which are varied to achieve the desired features. The differential evolution algorithm and the genetic algorithm with simulated binary crossover and polynomial mutation are applied to solve the formulated problem using the dynamic penalties method. The experimental results show that our technique enables us to find microstrip resonator topologies with desired amplitude-frequency characteristics automatically, and manufactured devices demonstrate characteristics very close to the results of the algorithm. The proposed algorithmic approach may be used for automatically exploring the new perspective topologies of resonators used in microwave filters, radar antennas or sensors, in accordance with the defined criteria and constraints.

3.
Biomimetics (Basel) ; 9(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38392166

RESUMO

Numerous people are applying for bank loans as a result of the banking industry's expansion, but because banks only have a certain amount of assets to lend to, they can only do so to a certain number of applicants. Therefore, the banking industry is very interested in finding ways to reduce the risk factor involved in choosing the safe applicant in order to save lots of bank resources. These days, machine learning greatly reduces the amount of work needed to choose the safe applicant. Taking this into account, a novel weights and structure determination (WASD) neural network has been built to meet the aforementioned two challenges of credit approval and loan approval, as well as to handle the unique characteristics of each. Motivated by the observation that WASD neural networks outperform conventional back-propagation neural networks in terms of sluggish training speed and being stuck in local minima, we created a bio-inspired WASD algorithm for binary classification problems (BWASD) for best adapting to the credit or loan approval model by utilizing the metaheuristic beetle antennae search (BAS) algorithm to improve the learning procedure of the WASD algorithm. Theoretical and experimental study demonstrate superior performance and problem adaptability. Furthermore, we provide a complete MATLAB package to support our experiments together with full implementation and extensive installation instructions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA