Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Behav Neurosci ; 137(1): 29-40, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36074577

RESUMO

The amygdala and orbitofrontal cortex (OFC) are interconnected regions that serve as key nodes in brain circuits supporting social and affective behaviors. An important question that has come into focus is whether these regions also play a fundamental role in responding to novelty. One possibility is that these regions are important for discriminating novel from familiar stimuli. An alternative possibility is that these regions contribute to affective responses to stimuli in novelty-based tasks. For example, the amygdala and OFC could contribute to assessing novel stimuli as being threatening or previously selected stimuli as having reward value. The present study tested rhesus macaque monkeys with damage to the amygdala or OFC, along with sham-operated control monkeys, across six variants of novelty-based memory tasks. The results showed that monkeys with damage to the amygdala or OFC performed better overall than control monkeys across the tasks. The results indicated that neither region was essential for discriminating novel from familiar stimuli. Instead, the findings suggested that the improved performance observed in novelty-based tasks following damage to these regions was more likely attributable to influences on affect. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Tonsila do Cerebelo , Córtex Pré-Frontal , Animais , Macaca mulatta , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/fisiologia , Recompensa
2.
Dev Cogn Neurosci ; 58: 101165, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270099

RESUMO

The hippocampus is important for long-term memory storage, but also plays a role in regulating the hypothalamic-pituitary-adrenal (HPA) axis and emotional behaviors. We previously reported that early hippocampal damage in monkeys result in increased anxious expression and blunted HPA responses to an acute stressor. Here, we further probe their responses toward aversive stimuli (conditioned and unconditioned) and evaluate HPA axis dysfunction. Responses toward social, innate, and learned aversive stimuli, fear potentiated acoustic startle, and pituitary-adrenal function were investigated in 13 adult rhesus monkeys with neonatal hippocampal lesions (Neo-Hibo=6) and controls (Neo-C=7). Neo-Hibo monkeys' responses depend on the type of unconditioned stimulus, with increased anxiety behaviors toward social and learned, but decreased reactivity toward innate stimuli. Neo-C and Neo-Hibo monkeys exhibited similar performance learning conditioned cues and safety signals. Neo-Hibo monkeys were less sensitive to HPA axis stimulation, potentially suggesting adrenal fatigue. Current findings suggest that the hippocampus plays a large role in regulating not only anxiety behaviors, but also the HPA-axis, a neural system crucial to regulate how we respond to the world around us. These data have important clinical significance considering that many developmental neuropsychiatric disorders exhibit altered hippocampal structure and function, emotional and HPA axis dysregulation.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Animais , Sistema Hipófise-Suprarrenal/metabolismo , Hipocampo , Macaca mulatta , Medo/fisiologia
3.
Behav Neurosci ; 134(2): 153-165, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32175761

RESUMO

The amygdala plays an essential role in evaluating social information, threat detection, and learning fear associations. Yet, most of that knowledge comes from studies in adult humans and animals with a fully developed amygdala. Given the considerable protracted postnatal development of the amygdala, it is important to understand how early damage to this structure may impact the long-term development of behavior. The current study examined behavioral responses toward social, innate, or learned aversive stimuli among neonatal amygdala lesion (Neo-Aibo; males = 3, females = 3) or sham-operated control (Neo-C; males = 3, females = 4) rhesus macaques. Compared with controls, Neo-Aibo animals exhibited less emotional reactivity toward aversive objects, including faster retrieval of food reward, fewer fearful responses, and more manipulation of objects. This lower reactivity was only seen in response to social and innate aversive stimuli, whereas Neo-Aibo animals had similar responses to controls for learned aversive stimuli. The current study also detected sex differences in behavioral response to aversive stimuli, such that, as compared with males, females took longer to retrieve the food reward across all aversive stimuli types, but only expressed more hostility and more coo vocalizations during learned aversive trials. Early amygdala damage impacted the expression of some, but not all, sex differences. For example, neonatal amygdala damage eliminated the sex difference in object manipulation. These findings add important information that broaden our understanding of the role of the amygdala in the expression of sexually dimorphic behaviors, as well as its role in learning fear associations and threat detection. (PsycINFO Database Record (c) 2020 APA, all rights reserved).


Assuntos
Tonsila do Cerebelo/fisiologia , Emoções/fisiologia , Medo/fisiologia , Caracteres Sexuais , Comportamento Social , Tonsila do Cerebelo/patologia , Animais , Animais Recém-Nascidos , Aprendizagem da Esquiva , Comportamento Animal/fisiologia , Feminino , Macaca mulatta , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA