Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunol Invest ; 52(7): 779-795, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37610337

RESUMO

In clinical practice, the low immunogenicity and low stability of the DNA plasmid vaccine candidates are two significant shortcomings in their application against infectious diseases. To overcome these two disadvantages, the plasmid expressing IL-29 (pIL-29) as a genetic adjuvant and polylactic-co-glycolic acid (PLGA) as a non-viral delivery system were used, respectively. In this study, the pIL-29 encapsulated in PLGA nanoparticles (nanoIL-29) and the pgD1 encapsulated in PLGA nanoparticles (nanoVac) were simultaneously applied to boost immunologic responses against HSV-1. We generated spherical nanoparticles with encapsulation efficiency of 75 ± 5% and sustained the release of plasmids from them. Then, Balb/c mice were subcutaneously immunized twice with nanoVac+nanoIL-29, Vac+IL-29, nanoVac, Vac, nanoIL-29, and/or IL-29 in addition to negative and positive control groups. Cellular immunity was evaluated via lymphocyte proliferation assay, cytotoxicity test, and IFN-γ, IL-4, and IL-2 measurements. Mice were also challenged with 50X LD50 of HSV-1. The nanoVac+nanoIL-29 candidate vaccine efficiently enhances CTL and Th1-immune responses and increases the survival rates by 100% in mice vaccinated by co-administration of nanoVac and nanoIL-29 against the HSV-1 challenge. The newly proposed vaccine is worth studying in further clinical trials, because it could effectively improve cellular immune responses and protected mice against HSV-1.


Assuntos
Herpesvirus Humano 1 , Nanopartículas , Vacinas de DNA , Animais , Camundongos , Glicóis , Citocinas , Camundongos Endogâmicos BALB C
2.
Cancer Cell Int ; 21(1): 160, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750395

RESUMO

BACKGROUND: CDC27 is one of the core components of Anaphase Promoting complex/cyclosome. The main role of this protein is defined at cellular division to control cell cycle transitions. Here we review the molecular aspects that may affect CDC27 regulation from cell cycle and mitosis to cancer pathogenesis and prognosis. MAIN TEXT: It has been suggested that CDC27 may play either like a tumor suppressor gene or oncogene in different neoplasms. Divergent variations in CDC27 DNA sequence and alterations in transcription of CDC27 have been detected in different solid tumors and hematological malignancies. Elevated CDC27 expression level may increase cell proliferation, invasiveness and metastasis in some malignancies. It has been proposed that CDC27 upregulation may increase stemness in cancer stem cells. On the other hand, downregulation of CDC27 may increase the cancer cell survival, decrease radiosensitivity and increase chemoresistancy. In addition, CDC27 downregulation may stimulate efferocytosis and improve tumor microenvironment. CONCLUSION: CDC27 dysregulation, either increased or decreased activity, may aggravate neoplasms. CDC27 may be suggested as a prognostic biomarker in different malignancies.

3.
Immunol Invest ; 48(7): 759-769, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31117848

RESUMO

We assessed the effect of sodium butyrate (SB) as a histone deacetylase inhibitor (HDACi) on Toll-like receptor 4 (TLR4) gene expression levels, in low TLR4 expressing (HCT116) and high TLR4 expressing (SW480) colorectal cancer cells. The cytotoxic effect of SB was assessed by culturing SW480 and HCT116 cell lines using a broad spectrum of times and concentrations of SB. The MTT assay was done to check the cytotoxic properties of different SB concentrations. Gene expression levels of TLR4 was then evaluated for non-cytotoxic SB concentrations. Morphological analysis and MTT assay confirmed that SB concentrations equal to or less than 5mM were not cytotoxic for both cell lines. At 5mM concentration of SB in SW480 cell line and 1mM concentration of SB in HCT116 cell line, TLR4 gene expression level significantly increased from 24 to 48 hrs and decreased significantly from 48 to 72 hrs with an "early increased and late decreased pattern". At 1mM concentration of SB in SW480 cell line and 5mM concentration of SB in HCT116 cell line, TLR4 expression had a "gradually increased pattern". This study focuses on the dose-time-effect of SB in the pathogenesis of colorectal cancer. SB alters the expression level of TLR4 in colorectal cancer cells. This effect may depend on the cell type, treatment duration and SB concentration. The alterations in TLR4 expression may be due to the direct effect of SB on TLR4 and/or the expression changes of in other genes which may indirectly affect the TLR4 expression. Abbreviations: TLR4: Toll-like receptor 4; HDACi: histone deacetylase inhibitor; SB: sodium Butyrate; CRC: colorectal cancer; SCFA: short-chain fatty acid; hrs: hours.


Assuntos
Ácido Butírico/farmacologia , Neoplasias Colorretais/genética , Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Receptor 4 Toll-Like/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Células HCT116 , Humanos , Fatores de Tempo
4.
Immunopharmacol Immunotoxicol ; 41(3): 455-462, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31142168

RESUMO

Objective: Dendritic cells (DCs) are professional antigen presenting cells majorly modulated by various environmental factors. Leukemia inhibitory factor (LIF) is a pleiotropic cytokine from interleukin-6 family. Previous studies demonstrate that LIF is associated with several tolerogenic events; yet the exact effect of this cytokine on the generation and function of DCs was not explicitly identified. Materials and methods: To clarify the role of LIF in DCs development, immature DCs were differentiated from mouse bone marrow (BM) in a GM-CSF and IL-4 containing medium with or without LIF. Afterwards, in maturation process, the differentiated DCs were exposed to TNF-α in the presence or absence of LIF. Results: Immature DCs differentiated in the presence of LIF, proved a significant enhancement in the expression of MHCII, CD40, or CD86 molecules and in the antigen uptake function. LIF treatment of normal DCs while stimulating for maturation, caused a significant decrement in the expression of phenotypic markers as well as an increment in the antigen uptake function in comparison with TNF-α-only stimulated cells; however, the reduced ability for induction of allogenic T-cell proliferation proved no statistical significance. Conclusions: Our results can reflect a role for LIF in the generation and particularly maturation of DCs. It can be assumed that LIF rather modulates the maturation level, leading to the development of semi-mature and tolerogenic DCs. According to the high levels of LIF in immune-privileged sites like brain and uterine, it seems that the cytokine may account for the formation of local DCs that help the establishment of immunosuppressive environments.


Assuntos
Células da Medula Óssea/imunologia , Células Dendríticas/imunologia , Regulação da Expressão Gênica/imunologia , Fator Inibidor de Leucemia/imunologia , Animais , Antígenos de Diferenciação/imunologia , Células da Medula Óssea/citologia , Células Dendríticas/citologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Inibidor de Leucemia/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/imunologia
5.
Int Immunopharmacol ; 124(Pt A): 110872, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660595

RESUMO

Toxoplasma gondii is the protozoan causative agent of toxoplasmosis in humans and warm-blooded animals. Recent studies have illustrated that the immune system plays a pivotal role in the pathogenesis of toxoplasmosis by triggering immune cytokines like IL-12, TNF-α, and IFN-γ and immune cells like DCs, Th1, and Th17. On the other hand, some immune components can serve as prognosis markers of toxoplasmosis. In healthy people, the disease is often asymptomatic, but immunocompromised people and newborns may suffer severe symptoms and complications. Therefore, the immune prognostic markers may provide tools to measure the disease progress and help patients to avoid further complications. Immunotherapies using monoclonal antibody, cytokines, immune cells, exosomes, novel vaccines, and anti-inflammatory molecules open new horizon for toxoplasmosis treatment. In this review article, we discussed the immunopathogenesis, prognosis, and immunotherapy of Toxoplasma gondii infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA