Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(42): e2301163, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37267935

RESUMO

Microvascular networks are essential for the efficient transport of nutrients, waste products, and drugs throughout the body. Wire-templating is an accessible method for generating laboratory models of these blood vessel networks, but it has difficulty fabricating microchannels with diameters of ten microns and narrower, a requirement for modeling human capillaries. This study describes a suite of surface modification techniques to  selectively control the interactions amongst wires, hydrogels, and world-to-chip interfaces. This wire templating method enables the fabrication of perfusable hydrogel-based rounded cross-section capillary-scale networks whose diameters controllably narrow at bifurcations down to 6.1 ± 0.3 microns in diameter. Due to its low cost, accessibility, and compatibility with a wide range of common hydrogels of tunable stiffnesses such as collagen, this technique may increase the fidelity of experimental models of capillary networks for the study of human health and disease.


Assuntos
Capilares , Hidrogéis , Humanos , Engenharia Tecidual/métodos
2.
Adv Healthc Mater ; 11(16): e2200169, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35657072

RESUMO

No T cell receptor (TCR) T cell therapies have obtained clinical approval. The lack of strategies capable of selecting and recovering potent T cell candidates may be a contributor to this. Existing protocols for selecting TCR T cell clones for cell therapies such as peptide multimer methods have provided effective measurements on TCR affinities. However, these methods lack the ability to measure the collective strength of intercellular interactions (i.e., cellular avidity) and markers of T cell activation such as immunological synapse formation. This study describes a novel microfluidic fluid shear stress-based approach to identify and recover highly potent T cell clones based on the cellular avidity between living T cells and tumor cells. This approach is capable of probing approximately up to 10 000 T cell-tumor cell interactions per run and can recover potent T cells with up to 100% purity from mixed populations of T cells within 30 min. Markers of cytotoxicity, activation, and avidity persist when recovered high cellular avidity T cells are subsequently exposed to fresh tumor cells. These results demonstrate how microfluidic probing of cellular avidity may fast track the therapeutic T cell selection process and move the authors closer to precision cancer immunotherapy.


Assuntos
Microfluídica , Receptores de Antígenos de Linfócitos T , Ativação Linfocitária , Peptídeos , Linfócitos T
3.
J Clin Invest ; 132(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35708912

RESUMO

Aberrant expression of viral-like repeat elements is a common feature of epithelial cancers, and the substantial diversity of repeat species provides a distinct view of the cancer transcriptome. Repeatome profiling across ovarian, pancreatic, and colorectal cell lines identifies distinct clustering independent of tissue origin that is seen with coding gene analysis. Deeper analysis of ovarian cancer cell lines demonstrated that human satellite II (HSATII) satellite repeat expression was highly associated with epithelial-mesenchymal transition (EMT) and anticorrelated with IFN-response genes indicative of a more aggressive phenotype. SATII expression - and its correlation with EMT and anticorrelation with IFN-response genes - was also found in ovarian cancer RNA-Seq data and was associated with significantly shorter survival in a second independent cohort of patients with ovarian cancer. Repeat RNAs were enriched in tumor-derived extracellular vesicles capable of stimulating monocyte-derived macrophages, demonstrating a mechanism that alters the tumor microenvironment with these viral-like sequences. Targeting of HSATII with antisense locked nucleic acids stimulated IFN response and induced MHC I expression in ovarian cancer cell lines, highlighting a potential strategy of modulating the repeatome to reestablish antitumor cell immune surveillance.


Assuntos
Neoplasias Ovarianas , RNA Satélite , Carcinoma Epitelial do Ovário/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/genética , Fenótipo , RNA , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA