Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 515: 110932, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32615282

RESUMO

Pharmaceutical inhibitors of the endoplasmic reticulum (ER)-stress modulator PERK (eIF2AK3) have demonstrated anticancer activities in combination therapies, but their effectiveness as a single agent is limited, suggesting the existence of possible compensatory cellular responses. To explore the potential mechanisms involved, we performed time-course drug treatment experiments on the parental MCF-7 and drug resistant MCF-7EpiR and MCF-7TaxR breast cancer cells and identified GCN2 (eIF2AK4) as a molecule that can potentially cooperate with PERK to regulate FOXO3 via JNK and AKT to modulate drug response. Consistently, GCN2 knockdown severely impaired the clonal survival of parental and resistant MCF-7 cells and sensitised them to epirubicin and paclitaxel treatment. Western blot, RT-qPCR and ChIP analyses also confirmed that GCN2 inactivation causes an induction of JNK and thereby FOXO3 activity, culminating in an increase in PERK activity and expression at the transcription level. Conversely, PERK-inactivation using GSK2606414-induces an induction in GCN2 expression and activity also associated with JNK. In agreement, we also showed that the perk-/- MEFs, expressing elevated levels of P-JNK, JNK, GCN2 and reduced levels of P-AKT and P-FOXO3, have lower clonogenicity and are more sensitive to epirubicin compared to wild-type MEFs. Similarly, gcn2-/- MEFs expressing augmented levels of P-JNK, JNK, P-PERK, PERK and lower levels of P-AKT and P-FOXO3 also had lower clonogenicity and were more sensitive to epirubicin and PERK-inhibition. In addition, JNK1/2 deletion in MEFs resulted in reduced levels of GCN2, FOXO3, PERK, P-PERK expression as well as FOXO3 activity and enhanced clonal survival and resistance to PERK-inhibition. Together these results demonstrate that GCN2 cooperates with PERK through the JNK-FOXO3 axis in a reciprocal negative feedback loop to mediate cancer chemotherapeutic drug response and clonal survival, advocating the potential of targeting GCN2 as a therapeutic strategy for treating cancer and for overcoming drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteína Forkhead Box O3/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , eIF-2 Quinase/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Epirubicina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Paclitaxel/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
2.
Mol Cell Endocrinol ; 462(Pt B): 67-81, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28572047

RESUMO

The endoplasmic reticulum (ER) is a cellular organelle with central roles in maintaining proteostasis due to its involvement in protein synthesis, folding, quality control, distribution and degradation. The accumulation of misfolded proteins in the ER lumen causes 'ER stress' and threatens overall cellular proteostasis. To restore ER homeostasis, cells evoke an evolutionarily conserved adaptive signalling and gene expression network collectively called the 'unfolded protein response (UPR)', a complex biological process which aims to restore proteostasis. When ER stress is overwhelming and beyond rectification, the normally pro-survival UPR can shift to induce cell termination. Emerging evidence from mammalian, fly and nematode worm systems reveals that the FOXO Forkhead proteins integrate upstream ER stress and UPR signals with the transcriptional machinery to decrease translation, promote cell survival/termination and increase the levels of ER-resident chaperones and of ER-associated degradation (ERAD) components to restore ER homeostasis. The high rates of protein synthesis/translation associated with cancer cell proliferation and metabolism, as well as mutations resulting in aberrant proteins, also induce ER stress and the UPR. While the pro-survival side of the UPR underlies its ability to sustain and promote cancers, its apoptotic functions can be exploited for cancer therapies by offering the chance to 'flick the proteostatic switch'. To this end, further studies are required to fully reevaluate the roles and regulation of these UPR signalling molecules, including FOXO proteins and their targets, in cancer initiation and progression as well as the effects on inhibiting their functions in cancer cells. This information will help to establish these UPR signalling molecules as possible therapeutic targets and putative biomarkers in cancers.


Assuntos
Estresse do Retículo Endoplasmático , Fatores de Transcrição Forkhead/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA