Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 62(3): 725-734, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821278

RESUMO

Optomechanical components such as the lens barrels and frames of IR spectrometers produce strong internal stray radiation, which reduces the instrument's SNR and dynamic range. An IR internal stray radiation calculation method based on an analytical model of the view factor is proposed. The mathematical model of the view factor calculation method of typical optomechanical components is established. For any IR optical systems, the internal stray radiation can be quickly and accurately calculated by adjusting the coordinate systems in the calculation method. Based on the proposed method, the internal stray radiation of a double-pass long-wave IR spectrometer was calculated. The calculation results are consistent with the simulation results. The RMS value of the relative error between the calculated value and the simulated value is around 11%. To verify the proposed method, an experiment was conducted to test the internal stray radiation of the long-wave IR spectrometer. The internal stray radiation test results agree with the calculated and simulated results, and the relative error between the test results and the calculation results is within 9%.

2.
Appl Opt ; 61(8): 2125-2139, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35297906

RESUMO

The spaceborne dispersive spectrometer is widely used in environmental, resource, and ocean observations. The coded spectrometer has higher energy advantages than the dispersion spectrometer, so it has great application prospects. In the current study, we developed an off-axis short-wave infrared coded optical system (SICOS) based on curved prism dispersion, and we further explored the design and optimization of the SICOS structure. Finite element analyses of a space-based short-wave infrared coded spectrometer based on curved prism dispersion (SSICS-CPD), including static simulation, modal analysis, sinusoidal vibration mechanical analysis, and random vibration mechanical analysis, were carried out. Simulation results showed that the SICOS support structure had excellent mechanical and thermal stability. As off-axis optical systems cannot meet the requirements of optical position accuracy through centering processing, a point source microscope and three-coordinate measuring machines were employed to complete the high-precision and rapid assembly of the SSICS-CPD. In addition, verification tests of surface shape error, stress relief, random vibration, and optical design parameters were carried out to validate the high stability and imaging performance of the SSICS-CPD. Results showed that the average modulation transfer function in the full field was 0.43 at 16.67 lp/mm, the spectral smile was <0.2 pixels, and the spectral keystone was <0.1 pixels. The design, analysis, assembly, and verification of the SSICS-CPD provide a useful reference for the development of other spaceborne prism dispersion spectrometers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA