Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(26): 18104-18116, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38899355

RESUMO

The submarine-confined bubble swarm is considered an important constraining environment for the early evolution of living matter due to the abundant gas/water interfaces it provides. Similarly, the spatiotemporal characteristics of the confinement effect in this particular scenario may also impact the origin, transfer, and amplification of chirality in organisms. Here, we explore the confinement effect on the chiral hierarchical assembly of the amphiphiles in the confined bubble array stabilized by the micropillar templates. Compared with the other confinement conditions, the assembly in the bubble scenario yields a fractal morphology and exhibits a unique level of the chiral degree, ordering, and orientation consistency, which can be attributed to the characteristic interfacial effects of the rapidly formed gas/water interfaces. Thus, molecules with a balanced amphiphilicity can be more favorable for the promotion. Not limited to the pure enantiomers, chiral amplification of the enantiomer-mixed assembly is observed only in the bubble scenario. Beyond the interfacial mechanism, the fast formation kinetics of the confined liquid bridges in the bubble scenario endows the assembly with the tunable hierarchical morphology when regulating the amphiphilicity, aggregates, and confined spaces. Furthermore, the chiral-induced spin selectivity (CISS) effect of the fractal hierarchical assembly was systematically investigated, and a strategy based on photoisomerization was developed to efficiently modulate the CISS effect. This work provides insights into the robustness of confined bubble swarms in promoting a chiral hierarchical assembly and the potential applications of the resulting chiral hierarchical patterns in solid-state spintronic and optical devices.

2.
Nano Lett ; 23(18): 8505-8514, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37695636

RESUMO

Considerable efforts have been made to develop nanoparticle-based magnetic resonance contrast agents (CAs) with high relaxivity. The prolonged rotational correlation time (τR) induced relaxivity enhancement is commonly recognized, while the effect of the water coordination numbers (q) on the relaxivity of nanoparticle-based CAs gets less attention. Herein, we first investigated the relationship between T1 relaxivity (r1) and q in manganese-based hybrid micellar CAs and proposed a strategy to enhance the relaxivity by increasing q. Hybrid micelles with different ratios of amphiphilic manganese complex (MnL) and DSPE-PEG2000 were prepared, whose q values were evaluated by Oxygen-17-NMR spectroscopy. Micelles with lower manganese doping density exhibit increased q and enhanced relaxivity, corroborating the conception. In vivo sentinel lymph node (SLN) imaging demonstrates that DSPE-PEG/MnL micelles could differentiate metastatic SLN from inflammatory LN. Our strategy makes it feasible for relaxivity enhancement by modulating q, providing new approaches for the structural design of high-performance hybrid micellar CAs.


Assuntos
Micelas , Água , Manganês/química , Linfografia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Meios de Contraste/química
3.
Angew Chem Int Ed Engl ; 63(8): e202315599, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38169100

RESUMO

Polypeptides, as natural polyelectrolytes, are assembled into tailored proteins to integrate chromophores and catalytic sites for photosynthesis. Mimicking nature to create the water-soluble nanoassemblies from synthetic polyelectrolytes and photocatalytic molecular species for artificial photosynthesis is still rare. Here, we report the enhancement of the full-spectrum solar-light-driven H2 production within a supramolecular system built by the co-assembly of anionic metalloporphyrins with cationic polyelectrolytes in water. This supramolecular photocatalytic system achieves a H2 production rate of 793 and 685 µmol h-1 g-1 over 24 h with a combination of Mg or Zn porphyrin as photosensitizers and Cu porphyrin as a catalyst, which is more than 23 times higher than that of free molecular controls. With a photosensitizer to catalyst ratio of 10000 : 1, the highest H2 production rate of >51,700 µmol h-1 g-1 with a turnover number (TON) of >1,290 per molecular catalyst was achieved over 24 h irradiation. The hierarchical self-assembly not only enhances photostability through forming ordered stackings of the metalloporphyrins but also facilitates both energy and electron transfer from antenna molecules to catalysts, and therefore promotes the photocatalysis. This study provides structural and mechanistic insights into the self-assembly enhanced photostability and catalytic performance of supramolecular photocatalytic systems.

4.
Small ; 19(47): e2303885, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37496030

RESUMO

The black-to-yellow phase transition in perovskite quantum dots (QDs) is more complex than in bulk perovskites, regarding the role of surface energy. Here, with the assistance of in situ grazing-incidence wide-angle and small-angle X-ray scattering (GIWAXS/GISAXS), distinct phase behaviors of cesium lead iodide (CsPbI3 ) QD films under two different temperature profiles-instant heating-up (IHU) and slow heating-up (SHU) is investigated. The IHU process can cause the phase transition from black phase to yellow phase, while under the SHU process, the majority remains in black phase. Detailed studies and structural refinement analysis reveal that the phase transition is triggered by the removal of surface ligands, which switches the energy landscape. The lattice symmetry determines the transition rate and the coexistence black-to-yellow phase ratio. The SHU process allows longer relaxation time for a more ordered QD packing, which helps sustain the lattice symmetry and stabilizes the black phase. Therefore, one can use the lattice symmetry as a general index to monitor the CsPbI3 QD phase transition and finetune the coexistence black-to-yellow phase ratio for niche applications.

5.
Langmuir ; 39(28): 9932-9941, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37402318

RESUMO

Surfactant-like short peptides are a kind of ideal model for the study of chiral self-assembly. At present, there are few studies on the chiral self-assembly of multicharged surfactant-like peptides. In this study, we adopted a series of short peptides of Ac-I4KGK-NH2 with different combinations of L-lysine and D-lysine residues as the model molecules. TEM, AFM and SANS results showed that Ac-I4LKGLK-NH2, Ac-I4LKGDK-NH2, and Ac-I4DKGLK-NH2 formed the morphologies of nanofibers, and Ac-I4DKGDK-NH2 formed nanoribbons. All the self-assembled nanofibers, including the intermediate nanofibers of Ac-I4DKGDK-NH2 nanoribbons, showed the chirality of left handedness. Based on the molecular simulation results, it has been demonstrated that the supramolecular chirality was directly dictated by the orientation of single ß strand. The insertion of glycine residue demolished the effect of lysine residues on the single strand conformation due to its high conformational flexibility. The replacement of L-isoleucine with Da-isoleucine also confirmed that the isoleucine residues involved in the ß-sheet determined the supramolecular handedness. This study provides a profound mechanism of the chiral self-assembly of short peptides. We hope that it will improve the regulation of chiral molecular self-assembly with achiral glycine, as well.


Assuntos
Nanofibras , Nanotubos de Carbono , Surfactantes Pulmonares , Nanofibras/química , Glicina , Tensoativos/química , Lisina/química , Isoleucina , Lateralidade Funcional , Peptídeos/química , Lipoproteínas
6.
Angew Chem Int Ed Engl ; 62(48): e202311224, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37840434

RESUMO

Fluorescent materials with high brightness play a crucial role in the advancement of various technologies such as bioimaging, photonics, and OLEDs. While significant efforts are dedicated to designing new organic dyes with improved performance, enhancing the brightness of existing dyes holds equal importance. In this study, we present a simple supramolecular strategy to develop ultrabright cyanine-based fluorescent materials by addressing long-standing challenges associated with cyanine dyes, including undesired cis-trans photoisomerization and aggregation-caused quenching. Supra-cyanines are obtained by incorporating cyanine moieties in a cyclic peptide-based supramolecular scaffold, and exhibit high fluorescence quantum yields (up to 50 %) in both solution and in the solid state. These findings offer a versatile approach for constructing highly emissive cyanine-based supramolecular materials.

7.
J Am Chem Soc ; 144(51): 23560-23571, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36521019

RESUMO

We report the construction of molecular compartments by the growth of narrow-band semiconductor nanoparticles, tungsten oxide and its hydrate, in the mesopores of a metal-organic framework (MOF), MIL-100-Fe. The location of these nanoparticles in pores and their spatial arrangement across the MOF crystal are unveiled by powder X-ray diffraction and small-angle neutron scattering, respectively. Such a composition with pore-level precision leads to efficient overall conversion of gas-phase CO2 and H2O to CO, CH4, and H2O2 under visible light. When WO3·H2O nanoparticles are positioned in 2.5 nm mesopores with 24 wt %, the resulting composite, namely, 24%-WO3·H2O-in-MIL-100-Fe, exhibits a CO2 reduction rate of 0.49 mmol·g-1·h-1 beyond 420 nm and an apparent quantum efficiency of 1.5% at 420 nm. These performances stand as new benchmarks for visible-light-driven CO2 overall conversion. In addition to the size and location of semiconductor nanoparticles, the coordinated water species in the crystal are found critical for high catalytic activity, an aspect usually overlooked.

8.
Biomacromolecules ; 23(8): 3329-3335, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35875983

RESUMO

The fabrication of commercial cellulose nanofibrils (CNFs) into arrays with long-range ordering is of great significance for their extended applications, which, however, is severely hindered by their high disorder, aggregation, and hornified features. Herein, sub-nanoscale anionic metal oxide clusters (phosphotungstic acid, H3PW12O40, PTA) are applied to complex with commercial CNFs (dried powder DCNF and aqueous suspension WCNF) in aqueous media, and a long-range ordered layer structure can be facilely fabricated via typical unidirectional freezing. The surface complexation of the commercial CNFs and PTA can be confirmed through the small-angle scattering studies of the complex hydrogels. The hydrogels present similar correlation lengths in small-angle X-ray and neutron scattering measurements, suggesting the homogeneous distribution of PTA along the commercial CNFs. This gives rise to the negatively charged surface feature and further leads to strong repulsion among the commercial CNFs. Due to the disparity in sizes, the influence of PTA on the density of hydrogel networks is suppressed, and the network density is mainly dependent on the mass content of CNFs. The studies provide guidance to fabricate hydrogels with catalytic and photosensitive properties and also to design and stabilize long-range ordered structured aerogels during the removal of the nonfreezing bound water absorbed by the commercial CNFs after unidirectional freezing. This facile strategy shows great potential to broaden the application of commercial CNFs in thermal insulators, super-adsorbent materials, and supercapacitors in electrical devices.


Assuntos
Celulose , Nanofibras , Celulose/química , Hidrogéis/química , Nanofibras/química , Água
9.
Nano Lett ; 21(24): 10199-10207, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34870987

RESUMO

Although it is well-known proteins and their complexes are hierarchically organized and highly ordered structures, it remains a major challenge to replicate their hierarchical self-assembly process and to fabricate multihierarchical architectures with well-defined shapes and monodisperse characteristic sizes via peptide self-assembly. Here we describe an amphiphilic short peptide Ac-I3GGHK-NH2 that first preassembles into thin, left-handed ß-sheet nanofibrils, followed by their ordered packing into right-handed nanotubes. The key intermediate morphology and structures featuring the hierarchical process are simultaneously demonstrated. Further mechanistic exploration with the variants Ac-I3GGGK-NH2, Ac-I3GGFK-NH2, and Ac-I3GGDHDK-NH2 reveals the vital role of multiple His-His side chain interactions between nanofibrils in mediating higher-order assembly and architectures. Altogether, our findings not only advance current understanding of hierarchical assembly of peptides and proteins but also afford a paradigm of how to take advantage of side chain interactions to construct higher-order assemblies with enhanced complexities.


Assuntos
Nanotubos , Peptídeos , Interações Hidrofóbicas e Hidrofílicas , Nanotubos/química , Peptídeos/química , Conformação Proteica em Folha beta , Estrutura Secundária de Proteína
10.
Angew Chem Int Ed Engl ; 61(51): e202212527, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36102014

RESUMO

ß-sheets have the ability to hierarchically stack into assemblies, and much effort has been spent on designing different peptides to regulate their assembly behaviors. Although the progress is remarkable, it remains challenging to manipulate them in a controllable way for achieving both tailored structures and specific functions. In this study, we obtained bola-like peptides using de novo design and combinatorial chemical screening. By regulating the solvent-accessible surface area of the peptide chain, a series of assemblies with different tilt angles and active sites of the ß-sheet were obtained, resembling collapsed dominos. The structure-activity relationship of the optimized peptide NQ40 system was established and its ability to target the PD-L1 was demonstrated. This study successfully established the structure-function relationship of ß-sheets assemblies and has positive implications on the rational design of peptide assemblies that possess recognition abilities.


Assuntos
Peptídeos , Farmacóforo , Peptídeos/química , Conformação Proteica em Folha beta , Solventes
11.
Angew Chem Int Ed Engl ; 61(27): e202205183, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35470952

RESUMO

We report the large-scale synthesis of photoluminescent single-chain nanoparticles (SCNPs) by electrostatic-mediated intramolecular crosslinking in a concentrated solution of 40 mg mL-1 by continuous addition of the free radical initiator. Poly(vinyl benzyl chloride) was charged by quaternization with vinyl-imidazolium for the intramolecular crosslinking by using 2,2-dimethoxy-2-phenylacetophenone (DMAP) as the radical initiator. Under the electrostatic repulsion thus interchain isolation, the intrachain crosslinking experiences the transition from coil through pearl-necklace to globular state. The SCNPs demonstrate strong photoluminescence in the visible range when the non-emissive units are confined thereby. Composition and microstructure of the SCNPs are tunable. The photoluminescent tadpole-like Janus SCNP can be used to selectively illuminate interfacial membranes while stabilizing the emulsions.

12.
Angew Chem Int Ed Engl ; 60(41): 22212-22218, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34375017

RESUMO

The intrinsic conflicts between mechanical performances and processability are main challenges to develop cost-effective impact-resistant materials from polymers and their composites. Herein, polyhedral oligomeric silsesquioxanes (POSSs) are integrated as side chains to the polymer backbones. The one-dimension (1D) rigid topology imposes strong space confinements to realize synergistic interactions among POSS units, reinforcing the correlations among polymer chains. The afforded composites demonstrate unprecedented mechanical properties with ultra-stretchability, high rate-dependent strength, superior impact-resistant capacity as well as feasible processability/recoverability. The hierarchical structures of the hybrid polymers enable the co-existence of multiple dynamic relaxations that are responsible for fast energy dissipation and high mechanical strengths. The effective synergistic correlation strategy paves a new pathway for the design of advanced cluster-based materials.

13.
J Am Chem Soc ; 142(18): 8473-8482, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32302108

RESUMO

The precise construction of the high-order mechanically interlocked molecules (MIMs) with well-defined topological arrangements of multiple mechanically interlocked units has been a great challenge. Herein, we present the first successful preparation of a new family of daisy chain dendrimers, in which the individual [c2]daisy chain rotaxane units serve as the branches of dendrimer skeleton. In particular, the third-generation daisy chain dendrimer with 21 [c2]daisy chain rotaxane moieties was realized, which might be among the most complicated discrete high-order MIMs comprised of multiple [c2]daisy chain rotaxane units. Interestingly, such unique topological arrangements of multiple stimuli-responsive [c2]daisy chain rotaxanes endowed the resultant daisy chain dendrimers controllable and reversible nanoscale dimension modulation through the collective and amplified extension/contraction of each [c2]daisy chain rotaxane branch upon the addition of acetate anions or DMSO molecules as external stimulus. Furthermore, on the basis of such an intriguing size switching feature of daisy chain dendrimers, dynamic composite polymer films were constructed through the incorporation of daisy chain dendrimers into polymer films, which could undergo fast, reversible, and controllable shape transformations when DMSO molecules were employed as stimulus. The successful merging of [c2]daisy chain rotaxanes and dendrimers described herein provides not only a brand-new type of high-order mechanically interlocked systems with well-defined topological arrangements of [c2]daisy chain rotaxanes, but also a successful and practical approach toward the construction of supramolecular dynamic materials.

14.
J Am Chem Soc ; 142(39): 16538-16545, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32931700

RESUMO

The separation of actinides has a vital place in nuclear fuel reprocessing, recovery of radionuclides, and remediation of environmental contamination. Here we propose a new paradigm of nanocluster-based actinide separation, namely, nanoextraction, that can achieve efficient sequestration of uranium in an unprecedented form of giant coordination nanocages using a cone-shaped macrocyclic pyrogallol[4]arene as the extractant. The U24-based hexameric pyrogallol[4]arene nanocages with distinctive [U2(PG)2] binuclear units (PG = pyrogallol) that rapidly assembled in situ in monophasic solvent were identified by single-crystal X-ray diffraction, MALDI-TOF mass spectrometry, NMR spectroscopy, and small-angle X-ray and neutron scattering. Comprehensive biphasic extraction studies showed that this novel separation strategy has enticing advantages such as fast kinetics, high efficiency, and good selectivity over lanthanides, thereby demonstrating its potential for efficient separation of actinide ions.

15.
Angew Chem Int Ed Engl ; 58(48): 17412-17417, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31545541

RESUMO

Monodispersed hairy nanocomposites with typical 2 nm (isophthalic acid)24 Cu24 metal-organic polyhedra (MOP) as a core protected by 24 polymer chains with controlled narrow molecular weight distribution has been probed by imaging and scattering studies for the heterogeneity of polymers in the nanocomposites and the confinement effect the MOPs imposing on anchored polymers. Typical confined-extending surrounded by one entanglement area is proposed to describe the physical states of the polymer chains. This model dictates the counterintuitive thermal and rheological properties and prohibited solvent exchange properties of the nanocomposites, whilst those polymer chain states are tunable and deterministic based on their component inputs. From the relationship between the structure and behavior of the MOP nanocomposites, a MOP-composited thermoplastic elastomer was obtained, providing practical solutions to improve mechanical/rheological performances and processabilities of inorganic MOPs.

16.
ACS Appl Mater Interfaces ; 16(8): 9787-9798, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38350068

RESUMO

The controlled peptide self-assembly and disassembly are not only implicated in many cellular processes but also possess huge application potential in a wide range of biotechnology and biomedicine. ß-sheet peptide assemblies possess high kinetic stability, so it is usually hard to disassemble them rapidly. Here, we reported that both the self-assembly and disassembly of a designed short ß-sheet peptide IIIGGHK could be well harnessed through the variations of concentration, pH, and mechanical stirring. Microscopic imaging, neutron scattering, and infrared spectroscopy were used to track the assembly and disassembly processes upon these stimuli, especially the interconversion between thin, left-handed protofibrils and higher-order nanotubes with superstructural right-handedness. The underlying rationale for these controlled disassembly processes mainly lies in the fact that the specific His-His interactions between protofibrils were responsive to these stimuli. By taking advantage of the peptide self-assembly and disassembly, the encapsulation of the hydrophobic drug curcumin and its rapid release upon stimuli were achieved. Additionally, the peptide hydrogels facilitated the differentiation of neural cells while maintaining low cell cytotoxicity. We believe that such dynamic and reversible structural transformation in this work provides a distinctive paradigm for controlling the peptide self-assembly and disassembly, thus laying a foundation for practical applications of peptide assemblies.


Assuntos
Nanotubos de Peptídeos , Nanotubos , Nanotubos de Peptídeos/química , Peptídeos/farmacologia , Peptídeos/química , Conformação Proteica em Folha beta
17.
Adv Mater ; 36(15): e2308415, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265890

RESUMO

The topological Hall effect (THE) is the transport response of chiral spin textures and thus can serve as a powerful probe for detecting and understanding these unconventional magnetic orders. So far, the THE is only observed in either noncentrosymmetric systems where spin chirality is stabilized by Dzyaloshinskii-Moriya interactions, or triangular-lattice magnets with Ruderman-Kittel-Kasuya-Yosida-type interactions. Here, a pronounced THE is observed in a Fe-Co-Ni-Mn chemically complex alloy with a simple face-centered cubic (fcc) structure across a wide range of temperatures and magnetic fields. The alloy is shown to have a strong magnetic frustration owing to the random occupation of magnetic atoms on the close-packed fcc lattice and the direct Heisenberg exchange interaction among atoms, as evidenced by the appearance of a reentrant spin glass state in the low-temperature regime and the first principles calculations. Consequently, THE is attributed to the nonvanishing spin chirality created by strong spin frustration under the external magnetic field, which is distinct from the mechanism responsible for the skyrmion systems, as well as geometrically frustrated magnets.

18.
Nat Commun ; 15(1): 2784, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555349

RESUMO

An organic photovoltaic bulk heterojunction comprises of a mixture of donor and acceptor materials, forming a semi-crystalline thin film with both crystalline and amorphous domains. Domain sizes critically impact the device performance; however, conventional X-ray scattering techniques cannot detect the contrast between donor and acceptor materials within the amorphous intermixing regions. In this study, we employ neutron scattering and targeted deuteration of acceptor materials to enhance the scattering contrast by nearly one order of magnitude. Remarkably, the PM6:deuterated Y6 system reveals a new length scale, indicating short-range aggregation of Y6 molecules in the amorphous intermixing regions. All-atom molecular dynamics simulations confirm that this short-range aggregation is an inherent morphological advantage of Y6 which effectively assists charge extraction and suppresses charge recombination as shown by capacitance spectroscopy. Our findings uncover the amorphous nanomorphology of organic photovoltaic thin films, providing crucial insights into the morphology-driven device performance.

19.
Nanomaterials (Basel) ; 14(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38251158

RESUMO

In this work, the nanostructure of oxide dispersion-strengthened steels was studied by small-angle neutron scattering (SANS), transmission electron microscopy (TEM), and atom probe tomography (APT). The steels under study have different alloying systems differing in their contents of Cr, V, Ti, Al, and Zr. The methods of local analysis of TEM and APT revealed a significant number of nanosized oxide particles and clusters. Their sizes, number densities, and compositions were determined. A calculation of hardness from SANS data collected without an external magnetic field, or under a 1.1 T field, showed good agreement with the microhardness of the materials. The importance of taking into account two types of inclusions (oxides and clusters) and both nuclear and magnetic scattering was shown by the analysis of the scattering data.

20.
Nat Chem ; 16(6): 871-880, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594366

RESUMO

Conversion of plastic wastes to valuable carbon resources without using noble metal catalysts or external hydrogen remains a challenging task. Here we report a layered self-pillared zeolite that enables the conversion of polyethylene to gasoline with a remarkable selectivity of 99% and yields of >80% in 4 h at 240 °C. The liquid product is primarily composed of branched alkanes (selectivity of 72%), affording a high research octane number of 88.0 that is comparable to commercial gasoline (86.6). In situ inelastic neutron scattering, small-angle neutron scattering, solid-state nuclear magnetic resonance, X-ray absorption spectroscopy and isotope-labelling experiments reveal that the activation of polyethylene is promoted by the open framework tri-coordinated Al sites of the zeolite, followed by ß-scission and isomerization on Brönsted acids sites, accompanied by hydride transfer over open framework tri-coordinated Al sites through a self-supplied hydrogen pathway to yield selectivity to branched alkanes. This study shows the potential of layered zeolite materials in enabling the upcycling of plastic wastes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA