Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Mol Ecol ; 32(12): 3150-3164, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36932863

RESUMO

Low-vagility species may hold strong genetic signatures of past biogeographical processes but are also vulnerable to habitat loss. Flightless grasshoppers of the morabine group were once widespread in southeastern Australia, including Tasmania, but are becoming restricted to remnant patches of vegetation, with local ranges impacted by agriculture and development as well as management. Habitat fragmentation can generate genetically differentiated "island" populations with low genetic variation. However, following revegetation, populations could be re-established, and gene flow increased. Here we characterize single nucleotide polymorphism-based genetic variation in a widespread chromosomal race of the morabine Vandiemenella viatica (race 19) to investigate the genetic health of remnant populations and to provide guidelines for restoration efforts. We update the distribution of this race to new sites in Victoria and Tasmania, and show that V. viatica populations from northern Tasmania and eastern Victoria have reduced genetic variation compared to other mainland populations. In contrast, there was no effect of habitat fragment size on genetic variation. Tasmanian V. viatica populations fell into two groups, one connected genetically to eastern Victoria and the other connected to southwestern Victoria. Mainland populations showed isolation by distance. These patterns are consistent with expectations from past biogeographical processes rather than local recent population fragmentation and emphasize the importance of small local reserves in preserving genetic variation. The study highlights how genomic analyses can combine information on genetic variability and population structure to identify biogeographical patterns within a species, which in turn can inform decisions on potential source populations for translocations.


Assuntos
Genética Populacional , Gafanhotos , Animais , Variação Genética/genética , Gafanhotos/genética , Ecossistema , Vitória
2.
Glob Chang Biol ; 29(6): 1451-1470, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36515542

RESUMO

A core challenge in global change biology is to predict how species will respond to future environmental change and to manage these responses. To make such predictions and management actions robust to novel futures, we need to accurately characterize how organisms experience their environments and the biological mechanisms by which they respond. All organisms are thermodynamically connected to their environments through the exchange of heat and water at fine spatial and temporal scales and this exchange can be captured with biophysical models. Although mechanistic models based on biophysical ecology have a long history of development and application, their use in global change biology remains limited despite their enormous promise and increasingly accessible software. We contend that greater understanding and training in the theory and methods of biophysical ecology is vital to expand their application. Our review shows how biophysical models can be implemented to understand and predict climate change impacts on species' behavior, phenology, survival, distribution, and abundance. It also illustrates the types of outputs that can be generated, and the data inputs required for different implementations. Examples range from simple calculations of body temperature at a particular site and time, to more complex analyses of species' distribution limits based on projected energy and water balances, accounting for behavior and phenology. We outline challenges that currently limit the widespread application of biophysical models relating to data availability, training, and the lack of common software ecosystems. We also discuss progress and future developments that could allow these models to be applied to many species across large spatial extents and timeframes. Finally, we highlight how biophysical models are uniquely suited to solve global change biology problems that involve predicting and interpreting responses to environmental variability and extremes, multiple or shifting constraints, and novel abiotic or biotic environments.


Assuntos
Mudança Climática , Ecossistema , Ecologia , Previsões , Temperatura Alta
3.
J Exp Biol ; 226(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37470124

RESUMO

Survival and reproduction of endotherms depend on their ability to balance energy and water exchange with their environment, avoiding lethal deficits and maximising gains for growth and reproduction. At high environmental temperatures, diurnal endotherms maintain body temperature (Tb) below lethal limits via physiological and behavioural adjustments. Accurate models of these processes are crucial for predicting effects of climate variability on avifauna. We evaluated the performance of a biophysical model (NicheMapR) for predicting evaporative water loss (EWL), resting metabolic rate (RMR) and Tb at environmental temperatures approaching or exceeding normothermic Tb for three arid-zone birds: southern yellow-billed hornbill (Tockus leucomelas), southern pied babbler (Turdoides bicolor) and southern fiscal (Lanius collaris). We simulated metabolic chamber conditions and compared model outputs with thermal physiology data collected at air temperatures (Tair) between 10 and 50°C. Additionally, we determined the minimum data needed to accurately model diurnal birds' thermoregulatory responses to Tair using sensitivity analyses. Predicted EWL, metabolic rate and Tb corresponded tightly with observed values across Tair, with only minor discrepancies for EWL in two species at Tair≈35°C. Importantly, the model captured responses at Tair=30-40°C, a range spanning threshold values for sublethal fitness costs associated with sustained hot weather in arid-zone birds. Our findings confirm how taxon-specific parameters together with biologically relevant morphological data can accurately model avian thermoregulatory responses to heat. Biophysical models can be used as a non-invasive way to predict species' sensitivity to climate, accounting for organismal (e.g. physiology) and environmental factors (e.g. microclimates).


Assuntos
Temperatura Alta , Passeriformes , Animais , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Passeriformes/fisiologia , Clima Desértico
4.
Ecol Lett ; 24(2): 170-185, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33289263

RESUMO

In cold environments ectotherms can be dormant underground for long periods. In 1941 Cowles proposed an ecological trade-off involving the depth at which ectotherms overwintered: on warm days, only shallow reptiles could detect warming soils and become active; but on cold days, they risked freezing. Cowles discovered that most reptiles at a desert site overwintered at shallow depths. To extend his study, we compiled hourly soil temperatures (5 depths, 90 sites, continental USA) and physiological data, and simulated consequences of overwintering at fixed depths. In warm localities shallow ectotherms have lowest energy costs and largest reserves in spring, but in cold localities, they risk freezing. Ectotherms shifting hourly to the coldest depth potentially reduce energy expenses, but paradoxically sometimes have higher expenses than those at fixed depths. Biophysical simulations for a desert site predict that shallow ectotherms have increased opportunities for mid-winter activity but need to move deep to digest captured food. Our simulations generate testable predictions to eco-physiological questions but rely on physiological responses to acute cold rather than to natural cooling profiles. Furthermore, natural-history data to test most predictions do not exist. Thus, our simulation approach uncovers knowledge gaps and suggests research agendas for studying ectotherms overwintering underground.


Assuntos
Temperatura Baixa , Solo , Congelamento , Estações do Ano , Temperatura
5.
PLoS Comput Biol ; 16(4): e1007853, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32352964

RESUMO

The structure of tubular transport networks is thought to underlie much of biological regularity, from individuals to ecosystems. A core assumption of transport network models is either area-preserving or area-increasing branching, such that the summed cross-sectional area of all child branches is equal to or greater than the cross-sectional area of their respective parent branch. For insects, the most diverse group of animals, the assumption of area-preserving branching of tracheae is, however, based on measurements of a single individual and an assumption of gas exchange by diffusion. Here we show that ants exhibit neither area-preserving nor area-increasing branching in their abdominal tracheal systems. We find for 20 species of ants that the sum of child tracheal cross-sectional areas is typically less than that of the parent branch (area-decreasing). The radius, rather than the area, of the parent branch is conserved across the sum of child branches. Interpretation of the tracheal system as one optimized for the release of carbon dioxide, while readily catering to oxygen demand, explains the branching pattern. Our results, together with widespread demonstration that gas exchange in insects includes, and is often dominated by, convection, indicate that for generality, network transport models must include consideration of systems with different architectures.


Assuntos
Formigas/fisiologia , Transporte Biológico/fisiologia , Biologia Computacional/métodos , Modelos Biológicos , Traqueia/fisiologia , Animais , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo
6.
Ecol Appl ; 31(4): e02310, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33605475

RESUMO

All terrestrial ectotherms are constrained to some degree by their thermal environment and the extent to which they can behaviorally buffer variable thermal conditions. New biophysical modeling methods (NicheMapR) allow the calculation of the body temperature of thermoregulating animals anywhere in the world from first principles, but require detailed observational data for parameterization and testing. Here we describe the thermoregulatory biology of marching bands of the desert locust, Schistocerca gregaria, in the Sahara Desert of Mauritania where extreme heat and strong diurnal fluctuations are a major constraint on activity and physiological processes. Using a thermal infrared camera in the field, we showed that gregarious nymphs altered the microhabitats they used, as well as postural thermoregulatory behaviors, to maintain relatively high body temperature (nearly 40°C). Field and laboratory experiments demonstrated that the preferred body temperature accelerated digestive rates. Migratory bands frequently left foraging sites with full guts before consuming all vegetation and moved to another habitat before emptying their foregut. Thus, the repertoire for behavioral thermoregulation in the desert locust strongly facilitates foraging and digestion rates, which may accelerate developmental rates and increase survival. We used our data to successfully parameterize a general biophysical model of thermoregulatory behavior that could capture hourly body temperature and activity at our remote site using globally available environmental forcing data. This modeling approach provides a stronger basis for forecasting thermal constraints on locust outbreaks under current and future climates.


Assuntos
Gafanhotos , Animais , Clima , Ecossistema , Temperatura
8.
Glob Chang Biol ; 26(11): 6350-6362, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32871618

RESUMO

Winter climate warming is rapidly leading to changes in snow depth and soil temperatures across mid- and high-latitude ecosystems, with important implications for survival and distribution of species that overwinter beneath the snow. Amphibians are a particularly vulnerable group to winter climate change because of the tight coupling between their body temperature and metabolic rate. Here, we used a mechanistic microclimate model coupled to an animal biophysics model to predict the spatially explicit effects of future climate change on the wintering energetics of a freeze-tolerant amphibian, the Wood Frog (Lithobates sylvaticus), across its distributional range in the eastern United States. Our below-the-snow microclimate simulations were driven by dynamically downscaled climate projections from a regional climate model coupled to a one-dimensional model of the Laurentian Great Lakes. We found that warming soil temperatures and decreasing winter length have opposing effects on Wood Frog winter energy requirements, leading to geographically heterogeneous implications for Wood Frogs. While energy expenditures and peak body ice content were predicted to decline in Wood Frogs across most of our study region, we identified an area of heightened energetic risk in the northwestern part of the Great Lakes region where energy requirements were predicted to increase. Because Wood Frogs rely on body stores acquired in fall to fuel winter survival and spring breeding, increased winter energy requirements have the potential to impact local survival and reproduction. Given the geographically variable and intertwined drivers of future under-snow conditions (e.g., declining snow depths, rising air temperatures, shortening winters), spatially explicit assessments of species energetics and risk will be important to understanding the vulnerability of subnivium-adapted species.


Assuntos
Ecossistema , Neve , Animais , Mudança Climática , Great Lakes Region , Ranidae , Estações do Ano
9.
J Anim Ecol ; 89(7): 1722-1734, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32221971

RESUMO

The vulnerability of species to climate change is jointly influenced by geographic phenotypic variation, acclimation and behavioural thermoregulation. The importance of interactions between these factors, however, remains poorly understood. We demonstrate how advances in mechanistic niche modelling can be used to integrate and assess the influence of these sources of uncertainty in forecasts of climate change impacts. We explored geographic variation in thermal tolerance (i.e. maximum and minimum thermal limits) and its potential for acclimation in juvenile European common frogs Rana temporaria along elevational gradients. Furthermore, we employed a mechanistic niche model (NicheMapR) to assess the relative contributions of phenotypic variation, acclimation and thermoregulation in determining the impacts of climate change on thermal safety margins and activity windows. Our analyses revealed that high-elevation populations had slightly wider tolerance ranges driven by increases in heat tolerance but lower potential for acclimation. Plausibly, wider thermal fluctuations at high elevations favour more tolerant but less plastic phenotypes, thus reducing the risk of encountering stressful temperatures during unpredictable extreme events. Biophysical models of thermal exposure indicated that observed phenotypic and plastic differences provide limited protection from changing climates. Indeed, the risk of reaching body temperatures beyond the species' thermal tolerance range was similar across elevations. In contrast, the ability to seek cooler retreat sites through behavioural adjustments played an essential role in buffering populations from thermal extremes predicted under climate change. Predicted climate change also altered current activity windows, but high-elevation populations were predicted to remain more temporally constrained than lowland populations. Our results demonstrate that elevational variation in thermal tolerances and acclimation capacity might be insufficient to buffer temperate amphibians from predicted climate change; instead, behavioural thermoregulation may be the only effective mechanism to avoid thermal stress under future climates.


Assuntos
Aclimatação , Mudança Climática , Animais , Rana temporaria , Temperatura
10.
J Therm Biol ; 88: 102522, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32125998

RESUMO

The continual development of ecological models and availability of high-resolution gridded climate surfaces have stimulated studies that link climate variables to functional traits of organisms. A primary constraint of these studies is the ability to reliably predict the microclimate that an organism experiences using macroscale climate inputs. This is particularly important in regions where access to empirical information is limited. Here, we contrast correlative models based on both ambient and sea surface temperatures to mechanistic modelling approaches to predict beach sand temperatures at depths relevant to sea turtle nesting. We show that mechanistic models are congruent with correlative models at predicting sand temperatures. We used these predictions to explore thermal variation across 46 mainland and island beaches that span the geographical range of sea turtle nesting in Western Australia. Using high resolution gridded climate surfaces and site-specific soil reflectance, we predict almost 9 °C variation in average annual temperatures between beaches, and nearly 10 °C variation in average temperatures during turtle nesting seasons. Validation of models demonstrated that predictions were typically within 2 °C of observations and, although most sites had high correlations (r2 > 0.7), predictive capacity varied between sites. An advantage of the mechanistic model demonstrated here is that it can be used to explore the impacts of climate change on sea turtle nesting beach temperatures as, unlike correlative models, it can be forced with novel combinations of environmental variables.


Assuntos
Microclima , Modelos Teóricos , Comportamento de Nidação , Temperatura , Tartarugas/fisiologia , Animais , Areia , Austrália Ocidental
11.
Ecol Lett ; 22(11): 1940-1956, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31359571

RESUMO

Knowing where species occur is fundamental to many ecological and environmental applications. Species distribution models (SDMs) are typically based on correlations between species occurrence data and environmental predictors, with ecological processes captured only implicitly. However, there is a growing interest in approaches that explicitly model processes such as physiology, dispersal, demography and biotic interactions. These models are believed to offer more robust predictions, particularly when extrapolating to novel conditions. Many process-explicit approaches are now available, but it is not clear how we can best draw on this expanded modelling toolbox to address ecological problems and inform management decisions. Here, we review a range of process-explicit models to determine their strengths and limitations, as well as their current use. Focusing on four common applications of SDMs - regulatory planning, extinction risk, climate refugia and invasive species - we then explore which models best meet management needs. We identify barriers to more widespread and effective use of process-explicit models and outline how these might be overcome. As well as technical and data challenges, there is a pressing need for more thorough evaluation of model predictions to guide investment in method development and ensure the promise of these new approaches is fully realised.


Assuntos
Clima , Ecossistema , Mudança Climática , Demografia , Previsões , Modelos Biológicos
12.
Proc Biol Sci ; 286(1898): 20190234, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30862288

RESUMO

Colour variation across climatic gradients is a common ecogeographical pattern; yet there is long-standing contention over underlying causes, particularly selection for thermal benefits. We tested the evolutionary association between climate gradients and reflectance of near-infrared (NIR) wavelengths, which influence heat gain but are not visible to animals. We measured ultraviolet (UVA), visible (Vis) and NIR reflectance from calibrated images of 372 butterfly specimens from 60 populations (49 species, five families) spanning the Australian continent. Consistent with selection for thermal benefits, the association between climate and reflectance was stronger for NIR than UVA-Vis wavelengths. Furthermore, climate predicted reflectance of the thorax and basal wing, which are critical to thermoregulation; but it did not predict reflectance of the entire wing, which has a variable role in thermoregulation depending on basking behaviour. These results provide evidence that selection for thermal benefits has shaped the reflectance properties of butterflies.


Assuntos
Borboletas/fisiologia , Clima , Raios Infravermelhos , Pigmentação , Animais , Austrália , Fenômenos Biofísicos , Cor , Feminino , Masculino
13.
Glob Chang Biol ; 25(8): 2633-2647, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31050846

RESUMO

Insights into the causal mechanisms that limit species distributions are likely to improve our ability to anticipate species range shifts in response to climate change. For species with complex life histories, a mechanistic understanding of how climate affects different lifecycle stages may be crucial for making accurate forecasts. Here, we use mechanistic niche modeling (NicheMapR) to derive "proximate" (mechanistic) variables for tadpole, juvenile, and adult Rana temporaria. We modeled the hydroperiod, and maximum and minimum temperatures of shallow (30 cm) ponds, as well as activity windows for juveniles and adults. We then used those ("proximate") variables in correlative ecological niche models (Maxent) to assess their role in limiting the species' current distribution, and to investigate the potential effects of climate change on R. temporaria across Europe. We further compared the results with a model based on commonly used macroclimatic ("distal") layers (i.e., bioclimatic layers from WorldClim). The maximum temperature of the warmest month (a macroclimatic variable) and maximum pond temperatures (a mechanistic variable) were the most important range-limiting factors, and maximum temperature thresholds were consistent with the observed upper thermal limit of R. temporaria tadpoles. We found that range shift forecasts in central Europe are far more pessimistic when using distal macroclimatic variables, compared to projections based on proximate mechanistic variables. However, both approaches predicted extensive decreases in climatic suitability in southern Europe, which harbors a significant fraction of the species' genetic diversity. We show how mechanistic modeling provides ways to depict gridded layers that directly reflect the microenvironments experienced by organisms at continental scales, and to reconstruct those predictors without extrapolation under novel future conditions. Furthermore, incorporating those predictors in correlative ecological niche models can help shed light on range-limiting processes, and can have substantial impacts on predictions of climate-induced range shifts.


Assuntos
Mudança Climática , Ecossistema , Anfíbios , Animais , Europa (Continente) , Temperatura
14.
J Anim Ecol ; 87(3): 660-671, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29446081

RESUMO

For ectotherms such as lizards, the importance of behavioural thermoregulation in avoiding thermal extremes is well-established and is increasingly acknowledged in modern studies of climate warming and its impacts. Less appreciated and understood are the buffering roles of retreat sites and activity phase, in part because of logistical challenges of studying below-ground activity. Burrowing and nocturnal activity are key behavioural adaptations that have enabled a diverse range of reptiles to survive extreme environmental temperatures within hot desert regions. Yet, the direct impact of recent global warming on activity potential has been hypothesised to have caused extinctions in desert lizards, including the Australian arid zone skink Liopholis kintorei. We test the relevance of this hypothesis through a detailed characterisation of the above- and below-ground thermal and hydric microclimates available to, and used by, L. kintorei. We integrate operative temperatures with observed body temperatures to construct daily activity budgets, including the inference of subterranean behaviour. We then assess the likelihood that contemporary and future local extinctions in this species, and those of similar burrowing habits, could be explained by the direct effects of warming on its activity budget and exposure to thermal extremes. We found that L. kintorei spent only 4% of its time active on the surface, primarily at dusk, and that overall potential surface activity will be increased, not restricted, with climate warming. The burrow system provides an exceptional buffer to current and future maximum extremes of temperature (≈40°C reduction from potential surface temperatures), and desiccation (burrows near 100% humidity). Therefore, any climate warming impacts on this species are likely to be indirect. Our findings reflect the general buffering capacity of underground microclimates, therefore, our conclusions for L. kintorei are more generally applicable to nocturnal and crepuscular ectotherms, and highlight the need to consider the buffering properties of retreat sites and activity phase when forecasting climate change impacts.


Assuntos
Clima Desértico , Aquecimento Global , Temperatura Alta/efeitos adversos , Características de História de Vida , Lagartos/fisiologia , Animais , Austrália , Ritmo Circadiano , Mudança Climática , Espécies em Perigo de Extinção , Solo
15.
Prostate ; 77(12): 1259-1264, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28762545

RESUMO

BACKGROUND: Early detection of aggressive prostate cancer (PCa) remains crucial for effective treatment of patients. However, PCa screening remains controversial due to a high rate of overdiagnosis and overtreatment. To better reconcile both objectives, more effective methods for assessing disease severity at the time of diagnosis are needed. METHODS: The relationship between DNA-methylation and high-grade PCa was examined in a cohort of 102 prospectively enrolled men who received standard 12-core prostate biopsies. EpiScore, an algorithm that quantifies the relative DNA methylation intensities of GSTP1, RASSF1, and APC in prostate biopsy tissue, was evaluated as a method to compensate for biopsy under-sampling and improve risk stratification at the time of diagnosis. RESULTS: DNA-methylation intensities of GSTP1, RASSF1, and APC were higher in biopsy cores from men diagnosed with GS ≥ 7 cancer compared to men with diagnosed GS 6 disease. This was confirmed by EpiScore, which was significantly higher for subjects with high-grade biopsies and higher NCCN risk categories (both P < 0.001). In patients diagnosed with GS ≥ 7, increased levels of DNA-methylation were present, not only in the high-grade biopsy cores, but also in other cores with no or low-grade disease (P < 0.001). By combining EpiScore with traditional clinical risk factors into a logistic regression model, the prediction of high GS reached an AUC of 0.82 (95%CI: 0.73-0.91) with EpiScore, DRE, and atypical histological findings as most important contributors. CONCLUSIONS: In men diagnosed with PCa, DNA-methylation profiling can detect under-sampled high-risk PCa in prostate biopsy specimens through a field effect. Predictive accuracy increased when EpiScore was combined with other clinical risk factors. These results suggest that EpiScore could aid in the detection of occult high-grade disease at the time of diagnosis, thereby improving the selection of candidates for Active Surveillance.


Assuntos
Biomarcadores Tumorais/genética , Epigênese Genética/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Idoso , Estudos de Coortes , Metilação de DNA/genética , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Medição de Risco/métodos
16.
Microb Pathog ; 105: 326-333, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28286149

RESUMO

Francisella noatunensis subsp. orientalis (Fno) (syn. F. asiatica) is an emergent warmwater fish pathogen and the causative agent of piscine francisellosis. Although Fno causes septicemia and can live extracellularly in infected tilapia (Oreochromis spp.), the early interaction of Fno with vasculature endothelium is unknown. In the present study, we examined the interaction of wild-type Fno (WT) and two Fno knockout [intracellular growth loci C (ΔiglC) and pathogenicity determinant protein A (ΔpdpA)] strains with the endothelial O. mossambicus bulbus arteriosus cell line (TmB) at 25 °C and 30 °C. Similar amounts of WT, ΔiglC, and ΔpdpA attached and were detected intracellularly after 5 h of incubation at both temperatures; however temperature affected attachment and uptake. While significantly greater amounts of Fno (WT, ΔiglC, and ΔpdpA) were detected intracellularly when TmB cells were incubated at 30 °C, bacteria attached to TmBs at greater levels at 25 °C. Only WT Fno was able to replicate intracellularly at 25 °C, which resulted in Fno mediated cytotoxicity and apoptosis at 24 and 72 h post-infection. WT Fno incubated at 30 °C as well as ΔiglC, and ΔpdpA incubated at 25 °C and 30 °C were all defective for survival, replication, and the ability to cause cytotoxicity in TmB. Taken together, these results demonstrate that temperature plays a vital role for Fno intracellular survival, persistence and cytotoxicity.


Assuntos
Doenças dos Peixes/microbiologia , Francisella/fisiologia , Tilápia/microbiologia , Adesinas Bacterianas/genética , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Endotélio/microbiologia , Doenças dos Peixes/patologia , Francisella/genética , Francisella/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Genoma Bacteriano , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/patologia , Infecções por Bactérias Gram-Negativas/veterinária , Interações Hospedeiro-Patógeno , Mutação
17.
Glob Chang Biol ; 23(3): 1048-1064, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27500587

RESUMO

How climate constrains species' distributions through time and space is an important question in the context of conservation planning for climate change. Despite increasing awareness of the need to incorporate mechanism into species distribution models (SDMs), mechanistic modeling of endotherm distributions remains limited in this literature. Using the American pika (Ochotona princeps) as an example, we present a framework whereby mechanism can be incorporated into endotherm SDMs. Pika distribution has repeatedly been found to be constrained by warm temperatures, so we used Niche Mapper, a mechanistic heat-balance model, to convert macroclimate data to pika-specific surface activity time in summer across the western United States. We then explored the difference between using a macroclimate predictor (summer temperature) and using a mechanistic predictor (predicted surface activity time) in SDMs. Both approaches accurately predicted pika presences in current and past climate regimes. However, the activity models predicted 8-19% less habitat loss in response to annual temperature increases of ~3-5 °C predicted in the region by 2070, suggesting that pikas may be able to buffer some climate change effects through behavioral thermoregulation that can be captured by mechanistic modeling. Incorporating mechanism added value to the modeling by providing increased confidence in areas where different modeling approaches agreed and providing a range of outcomes in areas of disagreement. It also provided a more proximate variable relating animal distribution to climate, allowing investigations into how unique habitat characteristics and intraspecific phenotypic variation may allow pikas to exist in areas outside those predicted by generic SDMs. Only a small number of easily obtainable data are required to parameterize this mechanistic model for any endotherm, and its use can improve SDM predictions by explicitly modeling a widely applicable direct physiological effect: climate-imposed restrictions on activity. This more complete understanding is necessary to inform climate adaptation actions, management strategies, and conservation plans.


Assuntos
Mudança Climática , Lagomorpha , Animais , Clima , Conservação dos Recursos Naturais , Ecossistema , Previsões , Dinâmica Populacional , Estados Unidos
18.
Proc Natl Acad Sci U S A ; 111(28): 10233-8, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982155

RESUMO

Accurate forecasts of biological invasions are crucial for managing invasion risk but are hampered by niche shifts resulting from evolved environmental tolerances (fundamental niche shifts) or the presence of novel biotic and abiotic conditions in the invaded range (realized niche shifts). Distinguishing between these kinds of niche shifts is impossible with traditional, correlative approaches to invasion forecasts, which exclusively consider the realized niche. Here we overcome this challenge by combining a physiologically mechanistic model of the fundamental niche with correlative models based on the realized niche to study the global invasion of the cane toad Rhinella marina. We find strong evidence that the success of R. marina in Australia reflects a shift in the species' realized niche, as opposed to evolutionary shifts in range-limiting traits. Our results demonstrate that R. marina does not fill its fundamental niche in its native South American range and that areas of niche unfilling coincide with the presence of a closely related species with which R. marina hybridizes. Conversely, in Australia, where coevolved taxa are absent, R. marina largely fills its fundamental niche in areas behind the invasion front. The general approach taken here of contrasting fundamental and realized niche models provides key insights into the role of biotic interactions in shaping range limits and can inform effective management strategies not only for invasive species but also for assisted colonization under climate change.


Assuntos
Bufo marinus/fisiologia , Mudança Climática , Ecossistema , Espécies Introduzidas , Modelos Biológicos , Animais , Austrália
19.
Proc Natl Acad Sci U S A ; 111(15): 5610-5, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24616528

RESUMO

Physiological thermal-tolerance limits of terrestrial ectotherms often exceed local air temperatures, implying a high degree of thermal safety (an excess of warm or cold thermal tolerance). However, air temperatures can be very different from the equilibrium body temperature of an individual ectotherm. Here, we compile thermal-tolerance limits of ectotherms across a wide range of latitudes and elevations and compare these thermal limits both to air and to operative body temperatures (theoretically equilibrated body temperatures) of small ectothermic animals during the warmest and coldest times of the year. We show that extreme operative body temperatures in exposed habitats match or exceed the physiological thermal limits of most ectotherms. Therefore, contrary to previous findings using air temperatures, most ectotherms do not have a physiological thermal-safety margin. They must therefore rely on behavior to avoid overheating during the warmest times, especially in the lowland tropics. Likewise, species living at temperate latitudes and in alpine habitats must retreat to avoid lethal cold exposure. Behavioral plasticity of habitat use and the energetic consequences of thermal retreats are therefore critical aspects of species' vulnerability to climate warming and extreme events.


Assuntos
Aclimatação/fisiologia , Anfíbios/fisiologia , Comportamento Animal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Ecossistema , Insetos/fisiologia , Répteis/fisiologia , Animais , Geografia , Especificidade da Espécie , Temperatura
20.
Vet Dermatol ; 28(6): 604-e147, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28722254

RESUMO

BACKGROUND: Appropriate allergen threshold concentrations (TCs) for intradermal testing (IDT) have not been established in horses for many pollen and mould allergens. OBJECTIVES: To determine the TCs in non-allergic horses and describe the frequency of late phase reactions for 26 allergens, including trees, grasses, weeds and moulds in horses residing in the southern Unites States. ANIMALS: Twenty four clinically normal horses in the southern United States. METHODS: Threshold concentrations for different allergens were determined using IDT subjective measurements at 30 minutes. Delayed reactions were evaluated at 4 and 24 h. RESULTS: Threshold concentrations (all PNU/mL) were established for eight tree allergens (black willow 1,000, box elder 1,000, live oak 1,000, pecan 2,000, white ash 4,000, red oak 4,000, red mulberry 2,000 and green ash 2,000); two grass allergens (Johnson grass 250 PNU/mL and Kentucky blue grass 500 PNU/mL); two weeds (carelessweed 1,000 PNU/mL, great ragweed 500 PNU/mL) and one mould (Curvularia 8,000 PNU/mL). The TC was not determined due to excessive reactivity at the lowest concentration tested (1,000 PNU/mL) for bahia and perennial rye grass. Eleven other allergens did not meet the criteria to establish a TC when evaluated at 30 min due to lack of positive reactions. Multiple allergens caused positive reactions in ≥10% of horses at 4 h. Reactions at 24 h were rare with the exception of one horse. CONCLUSIONS AND CLINICAL IMPORTANCE: This study identified intradermal TC for multiple pollen and mould allergens in horses. These values may prove useful for optimizing allergen concentrations for IDT of allergic horses.


Assuntos
Alérgenos/imunologia , Doenças dos Cavalos/diagnóstico , Hipersensibilidade/veterinária , Testes Intradérmicos/veterinária , Pólen/imunologia , Animais , Feminino , Fungos/imunologia , Doenças dos Cavalos/imunologia , Cavalos/imunologia , Hipersensibilidade/diagnóstico , Hipersensibilidade/imunologia , Testes Intradérmicos/métodos , Masculino , Plantas Daninhas/imunologia , Poaceae/imunologia , Sudeste dos Estados Unidos , Árvores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA