Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 104(6): 972-988, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28317238

RESUMO

The ability of excess Mg2+ to compensate the absence of cell wall related genes in Bacillus subtilis has been known for a long time, but the mechanism has remained obscure. Here, we show that the rigidity of wild-type cells remains unaffected with excess Mg2+ , but the proportion of amidated meso-diaminopimelic (mDAP) acid in their peptidoglycan (PG) is significantly reduced. We identify the amidotransferase AsnB as responsible for mDAP amidation and show that the gene encoding it is essential without added Mg2+ . Growth without excess Mg2+ causes ΔasnB mutant cells to deform and ultimately lyse. In cell regions with deformations, PG insertion is orderly and indistinguishable from the wild-type. However, PG degradation is unevenly distributed along the sidewalls. Furthermore, ΔasnB mutant cells exhibit increased sensitivity to antibiotics targeting the cell wall. These results suggest that absence of amidated mDAP causes a lethal deregulation of PG hydrolysis that can be inhibited by increased levels of Mg2+ . Consistently, we find that Mg2+ inhibits autolysis of wild-type cells. We suggest that Mg2+ helps to maintain the balance between PG synthesis and hydrolysis in cell wall mutants where this balance is perturbed in favor of increased degradation.


Assuntos
Ácido Diaminopimélico/metabolismo , Peptidoglicano/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Hidrólise , Magnésio/metabolismo , Peptidoglicano/biossíntese
2.
Molecules ; 21(10)2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27763518

RESUMO

The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.


Assuntos
Química Farmacêutica/métodos , Proteínas/química , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Epigênese Genética , Relação Estrutura-Atividade , Biologia de Sistemas
3.
Virol J ; 11: 133, 2014 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-25064136

RESUMO

BACKGROUND: Bacteriophages encode endolysins to lyse their host cell and allow escape of their progeny. Endolysins are also active against Gram-positive bacteria when applied from the outside and are thus attractive anti-bacterial agents. LysK, an endolysin from staphylococcal phage K, contains an N-terminal cysteine-histidine dependent amido-hydrolase/peptidase domain (CHAP(K)), a central amidase domain and a C-terminal SH3b cell wall-binding domain. CHAP(K) cleaves bacterial peptidoglycan between the tetra-peptide stem and the penta-glycine bridge. METHODS: The CHAP(K) domain of LysK was crystallized and high-resolution diffraction data was collected both from a native protein crystal and a methylmercury chloride derivatized crystal. The anomalous signal contained in the derivative data allowed the location of heavy atom sites and phase determination. The resulting structures were completed, refined and analyzed. The presence of calcium and zinc ions in the structure was confirmed by X-ray fluorescence emission spectroscopy. Zymogram analysis was performed on the enzyme and selected site-directed mutants. RESULTS: The structure of CHAP(K) revealed a papain-like topology with a hydrophobic cleft, where the catalytic triad is located. Ordered buffer molecules present in this groove may mimic the peptidoglycan substrate. When compared to previously solved CHAP domains, CHAP(K) contains an additional lobe in its N-terminal domain, with a structural calcium ion, coordinated by residues Asp45, Asp47, Tyr49, His51 and Asp56. The presence of a zinc ion in the active site was also apparent, coordinated by the catalytic residue Cys54 and a possible substrate analogue. Site-directed mutagenesis was used to demonstrate that residues involved in calcium binding and of the proposed active site were important for enzyme activity. CONCLUSIONS: The high-resolution structure of the CHAP(K) domain of LysK was determined, suggesting the location of the active site, the substrate-binding groove and revealing the presence of a structurally important calcium ion. A zinc ion was found more loosely bound. Based on the structure, we propose a possible reaction mechanism. Future studies will be aimed at co-crystallizing CHAP(K) with substrate analogues and elucidating its role in the complete LysK protein. This, in turn, may lead to the design of site-directed mutants with altered activity or substrate specificity.


Assuntos
Domínio Catalítico , Endopeptidases/química , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Fagos de Staphylococcus/metabolismo , Sítios de Ligação , Catálise , Endopeptidases/genética , Endopeptidases/metabolismo , Íons/metabolismo , Metais/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Multimerização Proteica , Staphylococcus aureus/virologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-24316838

RESUMO

CHAP(K) is the N-terminal cysteine, histidine-dependent amidohydrolase/peptidase domain (CHAP domain) of the Staphylococcus aureus bacteriophage K endolysin LysK. It is formed from the first 165 residues of LysK and functions by cleaving specific peptidoglycan peptide bonds, causing bacterial lysis. CHAP(K) can lyse S. aureus when applied exogenously, making it a good candidate for the treatment of multidrug-resistant Staphylococcus aureus infections. Here, the crystallization of CHAP(K) and the collection of native and derivative data to high resolution, which allowed structure solution, are reported. The structure may help to elucidate the mechanism of action and in the design of chimeric proteins or mutants with improved antibacterial activity.


Assuntos
Amidoidrolases/química , Bacteriófagos/química , Proteínas Virais/química , Amidoidrolases/genética , Amidoidrolases/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Sci Rep ; 12(1): 1137, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064120

RESUMO

Cell wall homeostasis in bacteria is tightly regulated by balanced synthesis and degradation of peptidoglycan (PG), allowing cells to expand their sacculus during growth while maintaining physical integrity. In rod-shaped bacteria, actin-like MreB proteins are key players of the PG elongation machinery known as the Rod complex. In the Gram-positive model bacterium Bacillus subtilis depletion of the essential MreB leads to loss of rod shape and cell lysis. However, millimolar concentrations of magnesium in the growth medium rescue the viability and morphological defects of mreB mutants by an unknown mechanism. Here, we used a combination of cytological, biochemical and biophysical approaches to investigate the cell surface properties of mreB null mutant cells and the interactions of Mg2+ with the cell wall of B. subtilis. We show that ∆mreB cells have rougher and softer surfaces, and changes in PG composition indicative of increased DL- and DD-endopeptidase activities as well as increased deacetylation of the sugar moieties. Increase in DL-endopeptidase activity is mitigated by excess Mg2+ while DD-endopeptidase activity remains high. Visualization of PG degradation in pulse-chase experiments showed anisotropic PG hydrolase activity along the sidewalls of ∆mreB cells, in particular at the sites of increased cell width and bulging, while PG synthesis remained isotropic. Overall, our data support a model in which divalent cations maintain rod shape in ∆mreB cells by inhibiting PG hydrolases, possibly through the formation of crosslinks with carboxyl groups of the PG meshwork that affect the capacity of PG hydrolases to act on their substrate.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Magnésio/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Mutação , N-Acetil-Muramil-L-Alanina Amidase/genética
6.
Curr Protein Pept Sci ; 17(2): 183-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26521950

RESUMO

Staphylococcus aureus is a major cause of infection in humans and animals, causing a wide variety of diseases, from local inflammations to fatal sepsis. The bacterium is commonly multi-drug resistant and thus many front-line antibiotics have been rendered ineffective for treating such infections. Research on murein/peptidoglycan hydrolases, derived from bacterial viruses (bacteriophages), has demonstrated that such proteins are attractive candidates for development as novel antibacterial agents for combatting Gram-positive pathogens. Here we review the research produced to-date on the bacteriophage-derived CHAPK murein peptidase. Initially, we sequenced and annotated the genome of anti-staphylococcal bacteriophage K and cloned the gene for the bacteriophage endolysin, a murein hydrolase which plays a role in cell killing during the bacteriophage life cycle. An highly active domain of the enzyme, a cysteine, histidine-dependent amido hydrolase/peptidase (CHAPK), was cloned, overexpressed in E. coli and purified. This CHAPK enzyme was demonstrated to rapidly lyse several strains of methicillin resistant S. aureus and both disrupted and prevented the formation of a staphylococcal biofilm. The staphylolytic activity of the peptidase was demonstrated in vivo using a mouse model, without adverse effects on the animals. The crystal structure of the enzyme was elucidated, revealing a calcium ion close to the active site. Site-directed mutagenesis indicated that this calcium ion is involved in the catalytic mechanism of the enzyme. The crystal structure of this enzyme is a valuable source of information for efficient engineering of this and similar CHAP-domain-containing proteins. Overall, the data collected to date on CHAPK has demonstrated its strong potential as a novel therapeutic candidate for treatment of staphylococcal infections and has provided us with insight into the fundamental enzymatic mechanisms of CHAP domain-containing peptidoglycan hydrolases.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Fagos de Staphylococcus/enzimologia , Animais , Biofilmes/efeitos dos fármacos , Endopeptidases/química , Humanos
7.
Bacteriophage ; 4: e28451, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25105056

RESUMO

This study describes the genome of temperate Siphoviridae phage DW2, which is routinely propagated on Staphylococcus aureus DPC5246. The 41941 bp genome revealed an open reading frame (ORF1) which has a high level of homology with members of the resolvase subfamily of site-specific serine recombinase, involved in chromosomal integration and excision. In contrast, the majority of staphylococcal phages reported to date encode tyrosine recombinases. Two putative genes encoded by phage DW2 (ORF15 and ORF24) were highly homologous to the NWMN0273 and NWMN0280 genes encoding virulence factors carried on the genome of ϕNM4, a prophage in the genome of S. aureus Newman. Phage DW2 also encodes proteins highly homologous to two well-characterized Staphylococcus aureus pathogenicity island derepressors encoded by the staphylococcal helper phage 80α indicating that it may similarly act as a helper phage for mobility of pathogenicity islands in S. aureus. This study also focused on the enzybiotic potential of phage DW2. The structure of the putative endolysin and tail hydrolase were investigated and used as the basis for a cloning strategy to create recombinant peptidoglycan hydrolyzing proteins. After overexpression in E. coli, four of these proteins (LysDW2, THDW2, CHAPE1-153, and CHAPE1-163) were demonstrated to have hydrolytic activity against peptidoglycan of S. aureus and thus represent novel candidates for exploitation as enzybiotics.

8.
Int J Microbiol ; 2013: 625341, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23431312

RESUMO

New antibacterial agents are urgently needed for the elimination of biofilm-forming bacteria that are highly resistant to traditional antimicrobial agents. Proliferation of such bacteria can lead to significant economic losses in the agri-food sector. This study demonstrates the potential of the bacteriophage-derived peptidase, CHAP(K), as a biocidal agent for the rapid disruption of biofilm-forming staphylococci, commonly associated with bovine mastitis. Purified CHAP(K) applied to biofilms of Staphylococcus aureus DPC5246 completely eliminated the staphylococcal biofilms within 4 h. In addition, CHAP(K) was able to prevent biofilm formation by this strain. The CHAP(K) lysin also reduced S. aureus in a skin decolonization model. Our data demonstrates the potential of CHAP(K) as a biocidal agent for prevention and treatment of biofilm-associated staphylococcal infections or as a decontaminating agent in the food and healthcare sectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA