Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Osteoporos Int ; 34(3): 551-561, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36580097

RESUMO

Osteoporosis care in men is suboptimal due to low rates of testing and treatment. Applying biomechanical computed tomography (BCT) analysis to existing CT scans, we found a high proportion of men with osteoporosis have never been diagnosed or treated. BCT may improve identification of patients at high risk of fracture. PURPOSE: Osteoporosis care in men is suboptimal due to low rates of DXA testing and treatment. Biomechanical computed tomography analysis (BCT) can be applied "opportunistically" to prior hip-containing CT scans to measure femoral bone strength and hip BMD. METHODS: In this retrospective, cross-sectional study, we used BCT in male veterans with existing CT scans to investigate the prevalence of osteoporosis, defined by hip BMD (T-score ≤ - 2.5) or fragile bone strength (≤ 3500 N). 577 men, age ≥ 65 with abdominal/pelvic CTs performed in 2017-2019, were randomly selected for BCT analysis. Clinical data were collected via electronic health records and used with the femoral neck BMD T-score from BCT to estimate 10-year hip fracture risks by FRAX. RESULTS: Prevalence of osteoporosis by BCT increased with age (13.5% age 65-74; 18.2% age 75-84; 34.3% age ≥ 85), with an estimated overall prevalence of 18.3% for men age ≥ 65. In those with osteoporosis (n = 108/577), only 38.0% (41/108) had a prior DXA and 18.6% (7/108) had received osteoporosis pharmacotherapy. Elevated hip fracture risk by FRAX (≥ 3%) did not fully capture those with fragile bone strength. In a multivariate logistic regression model adjusted for age, BMI, race, and CT location, end stage renal disease (odds ratio 7.4; 95% confidence interval 2.3-23.9), COPD (2.2; 1.2-4.0), and high-dose inhaled corticosteroid use (3.7; 1.2-11.8) were associated with increased odds of having osteoporosis by BCT. CONCLUSION: Opportunistic BCT in male veterans provides an additional avenue to identify patients who are at high risk of fractures.


Assuntos
Fraturas do Quadril , Osteoporose , Veteranos , Humanos , Masculino , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Estudos Retrospectivos , Prevalência , Estudos Transversais , Absorciometria de Fóton/métodos , Osteoporose/diagnóstico por imagem , Osteoporose/epidemiologia , Osteoporose/complicações , Fraturas do Quadril/diagnóstico por imagem , Fraturas do Quadril/epidemiologia , Fraturas do Quadril/etiologia , Tomografia Computadorizada por Raios X/métodos
2.
Liver Transpl ; 27(3): 341-348, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098253

RESUMO

Assessment of bone density is an important part of liver transplantation (LT) evaluation for early identification and treatment of osteoporosis. Dual-energy X-ray absorptiometry (DXA) is currently the standard clinical test for osteoporosis; however, it may contribute to the appointment burden on LT candidates during the cumbersome evaluation process, and there are limitations affecting its accuracy. In this study, we evaluate the utility of biomechanical analysis of vertebral images obtained during dual-energy abdominal triple-phase computed tomography (TPCT) in diagnosing osteoporosis among LT candidates. We retrospectively reviewed cases evaluated for LT between January 2017 and March 2018. All patients who underwent TPCT within 3 months of DXA were included. The biomechanical computed tomography (BCT) analysis was performed at a centralized laboratory (O.N. Diagnostics, Berkeley, CA) by 2 trained analysts blinded to the DXA data. DXA-based osteoporosis was defined as a T score ≤-2.5 at the hip or spine. BCT-based osteoporosis was defined as vertebral strength ≤4500 N for women or ≤6500 N for men or trabecular volumetric bone mineral density ≤80 mg/cm3 . Comparative data were available for 91 patients who had complete data for both DXA and BCT: 31 women and 60 men, age 54 ± 11 years (mean ± standard deviation), mean body mass index 28 ± 6 kg/m2 . Using DXA as the clinical reference, sensitivity of BCT to detect DXA-defined osteoporosis was 83.3% (20/24 patients) and negative predictive value was 91.7%; specificity and positive predictive value were 65.7% and 46.5%, respectively. BCT analysis of vertebral images on triple-phase computed tomography, routinely obtained during transplant evaluation, can reliably rule out osteoporosis in LT candidates. Patients with suspicion of osteoporosis on TPCT may need further evaluation by DXA.


Assuntos
Transplante de Fígado , Osteoporose , Absorciometria de Fóton , Adulto , Idoso , Densidade Óssea , Feminino , Humanos , Transplante de Fígado/efeitos adversos , Masculino , Pessoa de Meia-Idade , Osteoporose/diagnóstico por imagem , Estudos Retrospectivos
3.
J Biomech Eng ; 141(4)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30703208

RESUMO

The high-resolution peripheral quantitative computed tomography (HR-pQCT) provides unprecedented visualization of bone microstructure and the basis for constructing patient-specific microfinite element (µFE) models. Based on HR-pQCT images, we have developed a plate-and-rod µFE (PR µFE) method for whole bone segments using individual trabecula segmentation (ITS) and an adaptive cortical meshing technique. In contrast to the conventional voxel approach, the complex microarchitecture of the trabecular compartment is simplified into shell and beam elements based on the trabecular plate-and-rod configuration. In comparison to voxel-based µFE models of µCT and measurements from mechanical testing, the computational and experimental gold standards, nonlinear analyses of stiffness and yield strength using the HR-pQCT-based PR µFE models demonstrated high correlation and accuracy. These results indicated that the combination of segmented trabecular plate-rod morphology and adjusted cortical mesh adequately captures mechanics of the whole bone segment. Meanwhile, the PR µFE modeling approach reduced model size by nearly 300-fold and shortened computation time for nonlinear analysis from days to within hours, permitting broader clinical application of HR-pQCT-based nonlinear µFE modeling. Furthermore, the presented approach was tested using a subset of radius and tibia HR-pQCT scans of patients with prior vertebral fracture in a previously published study. Results indicated that yield strength for radius and tibia whole bone segments predicted by the PR µFE model was effective in discriminating vertebral fracture subjects from nonfractured controls. In conclusion, the PR µFE model of HR-pQCT images accurately predicted mechanics for whole bone segments and can serve as a valuable clinical tool to evaluate musculoskeletal diseases.

4.
J Biomech Eng ; 141(9)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31260520

RESUMO

High-resolution peripheral quantitative computed tomography (HR-pQCT) is a promising imaging modality that provides an in vivo three-dimensional (3D) assessment of bone microstructure by scanning fixed regions of the distal radius and tibia. However, how microstructural parameters and mechanical analysis based on these segment scans correlate to whole distal radius and tibia mechanics are not well-characterized. On 26 sets of cadaveric radius and tibia, HR-pQCT scans were performed on the standard scan segment, a segment distal to the standard segment, and a segment proximal to the standard segment. Whole distal radius and tibia stiffness were determined through mechanical testing. Segment bone stiffness was estimated using linear finite element (FE) analysis based on segment scans. Standard morphological and individual trabecula segmentation (ITS) analyses were used to estimate microstructural properties. Significant variations in microstructural parameters were observed among segments at both sites. Correlation to whole distal radius and tibia stiffness was moderate for microstructural parameters at the standard segment, but correlation was significantly increased for FE-predicted segment bone stiffness based on standard segment scans. Similar correlation strengths were found between FE-predicted segment bone stiffness and whole distal radius and tibia stiffness. Additionally, microstructural parameters at the distal segment had higher correlation to whole distal radius and tibia stiffness than at standard or proximal segments. Our results suggest that FE-predicted segment stiffness is a better predictor of whole distal radius and tibia stiffness for clinical HR-pQCT analysis and that microstructural parameters at the distal segment are more highly correlated with whole distal radius and tibia stiffness than at the standard or proximal segments.

5.
Proc Natl Acad Sci U S A ; 113(11): 2892-7, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929343

RESUMO

Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure.


Assuntos
Osso e Ossos/química , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Anisotropia , Materiais Biomiméticos , Remodelação Óssea , Osso e Ossos/ultraestrutura , Força Compressiva , Transtornos Traumáticos Cumulativos/metabolismo , Transtornos Traumáticos Cumulativos/fisiopatologia , Elasticidade , Feminino , Fraturas Espontâneas/metabolismo , Fraturas Espontâneas/fisiopatologia , Fraturas de Estresse/metabolismo , Fraturas de Estresse/fisiopatologia , Produtos Finais de Glicação Avançada/análise , Humanos , Vértebras Lombares/química , Vértebras Lombares/ultraestrutura , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Fraturas por Osteoporose/metabolismo , Fraturas por Osteoporose/fisiopatologia , Estresse Mecânico , Torção Mecânica , Suporte de Carga
6.
Lancet ; 390(10102): 1585-1594, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28755782

RESUMO

BACKGROUND: Previous bisphosphonate treatment attenuates the bone-forming effect of teriparatide. We compared the effects of 12 months of romosozumab (AMG 785), a sclerostin monoclonal antibody, versus teriparatide on bone mineral density (BMD) in women with postmenopausal osteoporosis transitioning from bisphosphonate therapy. METHODS: This randomised, phase 3, open-label, active-controlled study was done at 46 sites in North America, Latin America, and Europe. We enrolled women (aged ≥55 to ≤90 years) with postmenopausal osteoporosis who had taken an oral bisphosphonate for at least 3 years before screening and alendronate the year before screening; an areal BMD T score of -2·5 or lower at the total hip, femoral neck, or lumbar spine; and a history of fracture. Patients were randomly assigned (1:1) via an interactive voice response system to receive subcutaneous romosozumab (210 mg once monthly) or subcutaneous teriparatide (20 µg once daily). The primary endpoint was percentage change from baseline in areal BMD by dual-energy x-ray absorptiometry at the total hip through month 12 (mean of months 6 and 12), which used a linear mixed effects model for repeated measures and represented the mean treatment effect at months 6 and 12. All randomised patients with a baseline measurement and at least one post-baseline measurement were included in the efficacy analysis. This trial is registered with ClinicalTrials.gov, number NCT01796301. FINDINGS: Between Jan 31, 2013, and April 29, 2014, 436 patients were randomly assigned to romosozumab (n=218) or teriparatide (n=218). 206 patients in the romosozumab group and 209 in the teriparatide group were included in the primary efficacy analysis. Through 12 months, the mean percentage change from baseline in total hip areal BMD was 2·6% (95% CI 2·2 to 3·0) in the romosozumab group and -0·6% (-1·0 to -0·2) in the teriparatide group; difference 3·2% (95% CI 2·7 to 3·8; p<0·0001). The frequency of adverse events was generally balanced between treatment groups. The most frequently reported adverse events were nasopharyngitis (28 [13%] of 218 in the romosozumab group vs 22 [10%] of 214 in the teriparatide group), hypercalcaemia (two [<1%] vs 22 [10%]), and arthralgia (22 [10%] vs 13 [6%]). Serious adverse events were reported in 17 (8%) patients on romosozumab and in 23 (11%) on teriparatide; none were judged treatment related. There were six (3%) patients in the romosozumab group compared with 12 (6%) in the teriparatide group with adverse events leading to investigational product withdrawal. INTERPRETATION: Transition to a bone-forming agent is common practice in patients treated with bisphosphonates, such as those who fracture while on therapy. In such patients, romosozumab led to gains in hip BMD that were not observed with teriparatide. These data could inform clinical decisions for patients at high risk of fracture. FUNDING: Amgen, Astellas, and UCB Pharma.

7.
Radiology ; 278(1): 172-80, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26200602

RESUMO

PURPOSE: To evaluate the ability of additional analysis of computed tomographic (CT) colonography images to provide a comprehensive osteoporosis assessment. MATERIALS AND METHODS: This Health Insurance Portability and Accountability Act-compliant study was approved by our institutional review board with a waiver of informed consent. Diagnosis of osteoporosis and assessment of fracture risk were compared between biomechanical CT analysis and dual-energy x-ray absorptiometry (DXA) in 136 women (age range, 43-92 years), each of whom underwent CT colonography and DXA within a 6-month period (between January 2008 and April 2010). Blinded to the DXA data, biomechanical CT analysis was retrospectively applied to CT images by using phantomless calibration and finite element analysis to measure bone mineral density and bone strength at the hip and spine. Regression, Bland-Altman, and reclassification analyses and paired t tests were used to compare results. RESULTS: For bone mineral density T scores at the femoral neck, biomechanical CT analysis was highly correlated (R(2) = 0.84) with DXA, did not differ from DXA (P = .15, paired t test), and was able to identify osteoporosis (as defined by DXA), with 100% sensitivity in eight of eight patients (95% confidence interval [CI]: 67.6%, 100%) and 98.4% specificity in 126 of 128 patients (95% CI: 94.5%, 99.6%). Considering both the hip and spine, the classification of patients at high risk for fracture by biomechanical CT analysis--those with osteoporosis or "fragile bone strength"--agreed well against classifications for clinical osteoporosis by DXA (T score ≤-2.5 at the hip or spine), with 82.8% sensitivity in 24 of 29 patients (95% CI: 65.4%, 92.4%) and 85.7% specificity in 66 of 77 patients (95% CI: 76.2%, 91.8%). CONCLUSION: Retrospective biomechanical CT analysis of CT colonography for colorectal cancer screening provides a comprehensive osteoporosis assessment without requiring changes in imaging protocols.


Assuntos
Colonografia Tomográfica Computadorizada/métodos , Colo do Fêmur/diagnóstico por imagem , Osteoporose/diagnóstico por imagem , Coluna Vertebral/diagnóstico por imagem , Absorciometria de Fóton , Adulto , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Densidade Óssea , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Sensibilidade e Especificidade
8.
J Biomech Eng ; 137(1)2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25412197

RESUMO

This study investigated the effects of intraspecimen variations in tissue mineral density(TMD) on the apparent-level stiffness of human trabecular bone. High-resolution finite element (FE) models were created for each of 12 human trabecular bone specimens,using both microcomputed tomography (lCT) and "gold-standard" synchrotron radiation lCT (SRlCT) data. Our results confirm that incorporating TMD spatial variation reduces the calculated apparent stiffness compared to homogeneous TMD models. This effect exists for both lCT- and SRlCT-based FE models, but is exaggerated in lCT based models. This study provides a direct comparison of lCT to SRlCT data and is thereby able to conclude that the influence of including TMD heterogeneity is overestimated in lCT-based models.


Assuntos
Densidade Óssea , Osso e Ossos/fisiologia , Fenômenos Mecânicos , Idoso , Fenômenos Biomecânicos , Osso e Ossos/diagnóstico por imagem , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Pessoa de Meia-Idade , Microtomografia por Raio-X
9.
J Biomech Eng ; 137(1)2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25401413

RESUMO

Prior multiaxial strength studies on trabecular bone have either not addressed large variations in bone volume fraction and microarchitecture, or have not addressed the full range of multiaxial stress states. Addressing these limitations, we utilized micro-computed tomography (lCT) based nonlinear finite element analysis to investigate the complete 3D multiaxial failure behavior of ten specimens (5mm cube) of human trabecular bone, taken from three anatomic sites and spanning a wide range of bone volume fraction (0.09­0.36),mechanical anisotropy (range of E3/E1»3.0­12.0), and microarchitecture. We found that most of the observed variation in multiaxial strength behavior could be accounted for by normalizing the multiaxial strength by specimen-specific values of uniaxial strength (tension,compression in the longitudinal and transverse directions). Scatter between specimens was reduced further when the normalized multiaxial strength was described in strain space.The resulting multiaxial failure envelope in this normalized-strain space had a rectangular boxlike shape for normal­normal loading and either a rhomboidal box like shape or a triangular shape for normal-shear loading, depending on the loading direction. The finite element data were well described by a single quartic yield criterion in the 6D normalized strain space combined with a piecewise linear yield criterion in two planes for normalshear loading (mean error SD: 4.660.8% for the finite element data versus the criterion).This multiaxial yield criterion in normalized-strain space can be used to describe the complete 3D multiaxial failure behavior of human trabecular bone across a wide range of bone volume fraction, mechanical anisotropy, and microarchitecture.


Assuntos
Osso e Ossos , Teste de Materiais , Fenômenos Mecânicos , Idoso , Anisotropia , Osso e Ossos/anatomia & histologia , Osso e Ossos/citologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/fisiologia , Feminino , Análise de Elementos Finitos , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Estresse Mecânico , Microtomografia por Raio-X
10.
Am J Gastroenterol ; 109(3): 401-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24445572

RESUMO

OBJECTIVES: Osteoporosis and bone fractures are of particular concern in patients with inflammatory bowel disease (IBD). Biomechanical computed tomography (BCT) is an image-analysis technique that can measure bone strength and dual-energy X-ray absorptiometry (DXA)-equivalent bone mineral density (BMD) from noncontrast CT images. This study seeks to determine whether this advanced technology can be applied to patients with IBD undergoing CT enterography (CTE) with IV contrast. METHODS: Patients with IBD who underwent a CTE and DXA scan between 2007 and 2011 were retrospectively identified. Femoral neck BMD (g/cm(2)) and T-scores were measured and compared between DXA and BCT analysis of the CTE images. Femoral strength (Newtons) was also determined from BCT analysis. RESULTS: DXA- and CTE-generated BMD T-score values were highly correlated (R(2)=0.84, P<0.0001) in this patient cohort (n=136). CTE identified patients with both osteoporosis (sensitivity, 85.7%; 95% confidence interval (CI), 48.7-97.4 and specificity, 98.5%; 95% CI, 94.5-99.6) and osteopenia (sensitivity, 85.1%; 95% CI, 72.3-92.6 and specificity, 85.4%; 95% CI, 76.6-91.3). Of the 16 patients who had "fragile" bone strength by BCT (placing them at the equivalent high risk of fracture as for osteoporosis), 6 had osteoporosis and 10 had osteopenia by DXA. CONCLUSIONS: CTE scans can provide hip BMD, T-scores, and clinical classifications that are comparable to those obtained from DXA; when combined with BCT analysis, CTE can identify a subset of patients with osteopenia who have clinically relevant fragile bone strength. This technique could markedly increase bone health assessments in IBD patients already undergoing CTE to evaluate small bowel disease.


Assuntos
Meios de Contraste , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Programas de Rastreamento/métodos , Osteoporose/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Absorciometria de Fóton/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Feminino , Colo do Fêmur/diagnóstico por imagem , Humanos , Doenças Inflamatórias Intestinais/complicações , Masculino , Pessoa de Meia-Idade , Minnesota , Osteoporose/complicações , Estudos Retrospectivos , Adulto Jovem
11.
Clin Trials ; 11(3): 362-375, 2014 06.
Artigo em Inglês | MEDLINE | ID: mdl-24686158

RESUMO

Background The prevalence of low testosterone levels in men increases with age, as does the prevalence of decreased mobility, sexual function, self-perceived vitality, cognitive abilities, bone mineral density, and glucose tolerance, and of increased anemia and coronary artery disease. Similar changes occur in men who have low serum testosterone concentrations due to known pituitary or testicular disease, and testosterone treatment improves the abnormalities. Prior studies of the effect of testosterone treatment in elderly men, however, have produced equivocal results. Purpose To describe a coordinated set of clinical trials designed to avoid the pitfalls of prior studies and to determine definitively whether testosterone treatment of elderly men with low testosterone is efficacious in improving symptoms and objective measures of age-associated conditions. Methods We present the scientific and clinical rationale for the decisions made in the design of this set of trials. Results We designed The Testosterone Trials as a coordinated set of seven trials to determine if testosterone treatment of elderly men with low serum testosterone concentrations and symptoms and objective evidence of impaired mobility and/or diminished libido and/or reduced vitality would be efficacious in improving mobility (Physical Function Trial), sexual function (Sexual Function Trial), fatigue (Vitality Trial), cognitive function (Cognitive Function Trial), hemoglobin (Anemia Trial), bone density (Bone Trial), and coronary artery plaque volume (Cardiovascular Trial). The scientific advantages of this coordination were common eligibility criteria, common approaches to treatment and monitoring, and the ability to pool safety data. The logistical advantages were a single steering committee, data coordinating center and data and safety monitoring board, the same clinical trial sites, and the possibility of men participating in multiple trials. The major consideration in participant selection was setting the eligibility criterion for serum testosterone low enough to ensure that the men were unequivocally testosterone deficient, but not so low as to preclude sufficient enrollment or eventual generalizability of the results. The major considerations in choosing primary outcomes for each trial were identifying those of the highest clinical importance and identifying the minimum clinically important differences between treatment arms for sample size estimation. Potential limitations Setting the serum testosterone concentration sufficiently low to ensure that most men would be unequivocally testosterone deficient, as well as many other entry criteria, resulted in screening approximately 30 men in person to randomize one participant. Conclusion Designing The Testosterone Trials as a coordinated set of seven trials afforded many important scientific and logistical advantages but required an intensive recruitment and screening effort.


Assuntos
Ensaios Clínicos como Assunto , Terapia de Reposição Hormonal/métodos , Projetos de Pesquisa , Testosterona/uso terapêutico , Idoso , Humanos , Masculino , Testosterona/sangue
12.
J Bone Miner Res ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861422

RESUMO

Randomized trials have not been performed, and may never be, to determine if osteoporosis treatment prevents hip fracture in men. Addressing that evidence gap, we analyzed data from an observational study of new hip fractures in a large integrated healthcare system to compare the reduction in hip fractures associated with standard-of-care osteoporosis treatment in men versus women. Sampling from 271 389 patients age ≥ 65 who had a hip-containing computed tomography scan during care between 2005-2018, we selected all who subsequently had a first hip fracture (cases) after the CT scan (start of observation) and a sex-matched equal number of randomly selected patients. From those, we analyzed all who tested positive for osteoporosis (DXA-equivalent hip bone mineral density T-score ≤ -2.5, measured from the CT scan using VirtuOst). We defined "treated" as at least six months of any osteoporosis medication by prescription fill data during follow up; "not-treated" was no prescription fill. Sex-specific odds ratios of hip fracture for treated versus not-treated patients were calculated by logistic regression; adjustments included age, BMD T-score, a BMD-treatment interaction, body mass index, race/ethnicity, and seven baseline clinical risk factors. At two-year follow-up, 33.9% of the women (750/2211 patients) and 24.0% of the men (175/728 patients) were treated, primarily with alendronate; 51.3% and 66.3%, respectively, were not-treated; and 721 and 269, respectively, had a first hip fracture since the CT scan. Odds ratio of hip fracture for treated versus not-treated was 0.26 (95% confidence interval: 0.21-0.33) for women and 0.21 (0.13-0.34) for men; the ratio of these odds ratios (men:women) was 0.81 (0.47-1.37), indicating no significant sex effect. Various sensitivity and stratified analyses confirmed these trends, including results at five-year follow-up. Given these results and considering the relevant literature, we conclude that osteoporosis treatment prevents hip fracture similarly in both sexes.


Much evidence suggests that osteoporosis treatment should prevent hip fracture similarly in both sexes. However, because of their expense, randomized clinical trials to demonstrate that definitively have not been performed and may never be. As a result, osteoporosis testing and treatment is not as widely adopted for men as it is for women. Addressing that evidence gap, we analyzed data from over 250 000 patients in the Kaiser Permanente healthcare system in Southern California. Sampling a subset of all patients over a 13-year period who had had a computed tomography (CT or CAT) scan as part of their medical care for any reason, we measured bone mineral density from the CT scans to identify all patients who had osteoporosis at the hip and then used data from the electronic health records to determine statistically the risk of a future hip fracture for those who were treated for osteoporosis versus those who were not treated. We found that the reduction in risk of hip fracture associated with treatment did not differ between the sexes. These results demonstrate that treating osteoporosis in patients at high risk of hip fracture should reduce the risk of hip fracture similarly in both sexes.

13.
J Biomech Eng ; 135(12): 121010, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24121715

RESUMO

The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06-0.34) and elastic anisotropy. Micro-computed tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses--one each for yield failure in the longitudinal and transverse loading directions--and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor.


Assuntos
Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Fraturas Ósseas/patologia , Fraturas Ósseas/fisiopatologia , Fenômenos Mecânicos , Idoso , Anisotropia , Fenômenos Biomecânicos , Osso e Ossos/diagnóstico por imagem , Elasticidade , Feminino , Fraturas Ósseas/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Suporte de Carga , Microtomografia por Raio-X
14.
Bone ; 167: 116618, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36410666

RESUMO

PURPOSE: To evaluate the effects of cyclic vs daily teriparatide treatment (TPTD) on volumetric bone mineral density (vBMD) and bone strength at the hip and spine in women who were previously untreated. METHODS: A total of 86 women were randomized to a 24-month open label treatment of either daily TPTD (20 µg daily) or cyclic TPTD (20 µg daily for 3 months followed by 3 months off). During a 2-year extension, women in the daily TPTD group were switched to alendronate (ALN) and those in the cyclic TPTD group continued on cyclic TPTD (without any ALN). QCT images were acquired at baseline, 2-years (n = 54) and 4-years (n = 35) and analyzed for volumetric integral, cortical and trabecular bone mineral density (vBMD) and bone strength (by finite element analysis) at the hip and spine. The primary analysis presented here compared the responses across equal total TPTD doses (2 years daily vs 4 years cyclic). RESULTS: In the spine, integral vBMD and strength increased substantially after 2 years daily and 4 years cyclic TPTD, with no significant differences (vBMD +12 % vs +11 %, respectively, p = 0.70; spine strength +21 % vs +16 %, respectively, p = 0.35). At the hip, the gains were smaller, but again no significant differences were detected between the groups for the increases in either vBMD (+2 % in both groups, p = 0.97) or hip strength (3 % vs 3 %, p = 0.91). In the spine, the vBMD increment was about twice as large in the trabecular vs peripheral compartment; in the hip, significant vBMD gain was seen only in the trabecular compartment. CONCLUSIONS: The gains in volumetric BMD and bone strength for an equivalent dose of TPTD did not depend on whether it was administered every day over two years or cyclically over four years.


Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Osteoporose , Teriparatida , Feminino , Humanos , Alendronato/uso terapêutico , Densidade Óssea , Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/uso terapêutico , Osteoporose/tratamento farmacológico , Osteoporose Pós-Menopausa/tratamento farmacológico , Pós-Menopausa , Teriparatida/administração & dosagem , Teriparatida/uso terapêutico
15.
Comput Methods Biomech Biomed Engin ; 26(5): 508-516, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35579530

RESUMO

MicroCT-based finite element models were used to compute power law relations for uniaxial compressive yield stress versus bone volume fraction for 78 cores of human trabecular bone from five anatomic sites. The leading coefficient of the power law for calcaneus differed from those for most of the other sites (p < 0.05). However, after normalizing by site-specific mean values, neither the leading coefficient (p > 0.5) nor exponent (p > 0.5) differed among sites, suggesting that a given percentage deviation from mean bone volume fraction has the same mechanical consequence for all sites investigated. These findings help explain the success of calcaneal x-ray and ultrasound measurements for predicting hip fracture risk.


Assuntos
Calcâneo , Fraturas do Quadril , Humanos , Colo do Fêmur/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Osso Esponjoso/diagnóstico por imagem , Calcâneo/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Coluna Vertebral , Densidade Óssea
16.
J Bone Miner Res ; 38(7): 1032-1042, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37191221

RESUMO

The observed increased risk of fracture after cancer radiation therapy is presumably due to a radiation-induced reduction in whole-bone strength. However, the mechanisms for impaired strength remain unclear, as the increased fracture risk is not fully explained by changes in bone mass. To provide insight, a small animal model was used to determine how much of this whole-bone weakening effect for the spine is attributable to changes in bone mass, structure, and material properties of the bone tissue and their relative effects. Further, because women have a greater risk of fracture after radiation therapy than men, we investigated if sex had a significant influence on bone's response to irradiation. Fractionated in vivo irradiation (10 × 3 Gy) or sham irradiation (0 Gy) was administered daily to the lumbar spine in twenty-seven 17-week-old Sprague-Dawley rats (n = 6-7/sex/group). Twelve weeks after final treatment, animals were euthanized, and lumbar vertebrae (L4 and L5 ) were isolated. Using a combination of biomechanical testing, micro-CT-based finite element analysis, and statistical regression analysis, we separated out the effect of mass, structural, and tissue material changes on vertebral strength. Compared with the sham group (mean ± SD strength = 420 ± 88 N), the mean strength of the irradiated group was lower by 28% (117 N/420 N, p < 0.0001). Overall, the response of treatment did not differ with sex. By combining results from both general linear regression and finite element analyses, we calculated that mean changes in bone mass, structure, and material properties of the bone tissue accounted for 56% (66 N/117 N), 20% (23 N/117 N), and 24% (28 N/117 N), respectively, of the overall change in strength. As such, these results provide insight into why an elevated clinical fracture risk for patients undergoing radiation therapy is not well explained by changes in bone mass alone. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Densidade Óssea , Fraturas Ósseas , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Densidade Óssea/fisiologia , Osso e Ossos , Vértebras Lombares , Microtomografia por Raio-X
17.
Artigo em Inglês | MEDLINE | ID: mdl-37504955

RESUMO

In this study, we used micro-CT-based finite element analysis to investigate the biomechanical effects of radiation on the microstructure and mechanical function of murine lumbar vertebrae. Specifically, we evaluated vertebral microstructure, whole-bone stiffness, and cortical-trabecular load sharing in the L5 vertebral body of mice exposed to ionizing radiation 11 days post exposure (5 Gy total dose; n = 13) and controls (n = 14). Our findings revealed the irradiated group exhibited reduced trabecular bone volume and microstructure (p < 0.001) compared to controls, while cortical bone volume remained unchanged (p = 0.91). Axially compressive loads in the irradiated group were diverted from the trabecular centrum and into the vertebral cortex, as evidenced by a higher cortical load-fraction (p = 0.02) and a higher proportion of cortical tissue at risk of initial failure (p < 0.01). Whole-bone stiffness was lower in the irradiated group compared to the controls, though the difference was small and non-significant (2045 ± 142 vs. 2185 ± 225 vs. N/mm, irradiated vs. control, p = 0.07). Additionally, the structure-function relationship between trabecular bone volume and trabecular load fraction differed between groups (p = 0.03), indicating a less biomechanically efficient trabecular network in the irradiated group. We conclude that radiation can decrease trabecular bone volume and result in a less biomechanically efficient trabecular structure, leading to increased reliance on the vertebral cortex to resist axially compressive loads. These findings offer biomechanical insight into the effects of radiation on structure-function behavior in murine lumbar vertebrae independent of possible tissue-level material effects.

18.
Spine J ; 23(3): 412-424, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36372353

RESUMO

BACKGROUND CONTEXT: While osteoporosis is a risk factor for adverse outcomes in spinal fusion patients, diagnosing osteoporosis reliably in this population has been challenging due to degenerative changes and spinal deformities. Addressing that challenge, biomechanical computed tomography analysis (BCT) is a CT-based diagnostic test for osteoporosis that measures both bone mineral density and bone strength (using finite element analysis) at the spine; CT scans taken for spinal evaluation or previous care can be repurposed for the analysis. PURPOSE: Assess the effectiveness of BCT for preoperatively identifying spinal fusion patients with osteoporosis who are at high risk of reoperation or vertebral fracture. STUDY DESIGN: Observational cohort study in a multi-center integrated managed care system using existing data from patient medical records and imaging archives. PATIENT SAMPLE: We studied a randomly sampled subset of all adult patients who had any type of primary thoracic (T4 or below) or lumbar fusion between 2005 and 2018. For inclusion, patients with accessible study data needed a preop CT scan without intravenous contrast that contained images (before any instrumentation) of the upper instrumented vertebral level. OUTCOME MEASURES: Reoperation for any reason (primary outcome) or a newly documented vertebral fracture (secondary outcome) occurring up to 5 years after the primary surgery. METHODS: All study data were extracted using available coded information and CT scans from the medical records. BCT was performed at a centralized lab blinded to the clinical outcomes; patients could test positive for osteoporosis based on either low values of bone strength (vertebral strength ≤ 4,500 N women or 6,500 N men) and/or bone mineral density (vertebral trabecular bone mineral density ≤ 80 mg/cm3 both sexes). Cox proportional hazard ratios were adjusted by age, presence of obesity, and whether the fusion was long (four or more levels fused) or short (3 or fewer levels fused); Kaplan-Meier survival was compared by the log rank test. This project was funded by NIH (R44AR064613) and all physician co-authors and author 1 received salary support from their respective departments. Author 6 is employed by, and author 1 has equity in and consults for, the company that provides the BCT test; the other authors declare no conflicts of interest. RESULTS: For the 469 patients analyzed (298 women, 171 men), median follow-up time was 44.4 months, 11.1% had a reoperation (median time 14.5 months), and 7.7% had a vertebral fracture (median time 2.0 months). Overall, 25.8% of patients tested positive for osteoporosis and no patients under age 50 tested positive. Compared to patients without osteoporosis, those testing positive were at almost five-fold higher risk for vertebral fracture (adjusted hazard ratio 4.7, 95% confidence interval = 2.2-9.7; p<.0001 Kaplan-Meier survival). Of those positive-testing patients, those who tested positive concurrently for low values of both bone strength and bone mineral density (12.6% of patients overall) were at almost four-fold higher risk for reoperation (3.7, 1.9-7.2; Kaplan-Meier survival p<.0001); the remaining positive-testing patients (those who tested positive for low values of either bone strength or bone mineral density but not both) were not at significantly higher risk for reoperation (1.6, 0.7-3.7) but were for vertebral fracture (4.3, 1.9-10.2). For both clinical outcomes, risk remained high for patients who underwent short or long fusion. CONCLUSION: In a real-world clinical setting, BCT was effective in identifying primary spinal fusion patients aged 50 or older with osteoporosis who were at elevated risks of reoperation and vertebral fracture.


Assuntos
Osteoporose , Fraturas da Coluna Vertebral , Fusão Vertebral , Masculino , Adulto , Humanos , Feminino , Reoperação , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/cirurgia , Fraturas da Coluna Vertebral/epidemiologia , Fusão Vertebral/efeitos adversos , Fusão Vertebral/métodos , Osteoporose/diagnóstico por imagem , Osteoporose/cirurgia , Densidade Óssea , Tomografia Computadorizada por Raios X/métodos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia
19.
Eur Urol Oncol ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37926618

RESUMO

BACKGROUND: Guidelines recommend dual-energy x-ray absorptiometry (DXA) screening to assess fracture risk and benefit from antiresorptive therapy in men with metastatic hormone-sensitive prostate cancer (mHSPC) on androgen deprivation therapy (ADT). However, <30% of eligible patients undergo DXA screening. Biomechanical computed tomography (BCT) is a radiomic technique that measures bone mineral density (BMD) and bone strength from computed tomography (CT) scans. OBJECTIVE: To evaluate the (1) correlations between BCT- and DXA-assessed BMD, and (2) associations between BCT-assessed metrics and subsequent fracture. DESIGN, SETTING, AND PARTICIPANTS: A multicenter retrospective cohort study was conducted among patients with mHSPC between 2013 and 2020 who received CT abdomen/pelvis or positron emission tomography/CT within 48 wk before ADT initiation and during follow-up (48-96 wk after ADT initiation). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We used univariate logistic regression to assess the associations between BCT measurements and the primary outcomes of subsequent pathologic and nonpathologic fractures. RESULTS AND LIMITATIONS: Among 91 eligible patients, the median ([interquartile range) age was 67 yr (62-75), 44 (48.4%) were White, and 41 (45.1%) were Black. During the median follow-up of 82 wk, 17 men (18.6%) developed a pathologic and 15 (16.5%) a nonpathologic fracture. BCT- and DXA-assessed femoral-neck BMD T scores were strongly correlated (R2 = 0.93). On baseline CT, lower BCT-assessed BMD (odds ratio [OR] 1.80, 95% confidence interval or CI [1.10, 3.25], p = 0.03) was associated with an increased risk of a pathologic fracture. Lower femoral strength (OR 1.63, 95% CI [0.99, 2.71], p = 0.06) was marginally associated with an increased risk of a pathologic fracture. Neither BMD (OR 1.52, 95% CI [0.95, 2.63], p = 0.11) nor strength (OR 1.14, 95% CI [0.75, 1.80], p = 0.57) was associated with a nonpathologic fracture. BCT identified nine (9.9%) men eligible for antiresorptive therapy, of whom four (44%) were not treated. Limitations include low fracture numbers resulting in lower power to detect fracture associations. CONCLUSIONS: Among men diagnosed with mHSPC, BCT assessments were strongly correlated with DXA, predicted subsequent pathologic fracture, and identified additional men indicated for antiresorptive therapy. PATIENT SUMMARY: We assess whether biomechanical computer tomography (BCT) from routine computer tomography (CT) scans can identify fracture risk among patients recently diagnosed with metastatic prostate cancer. We find that BCT and dual-energy x-ray absorptiometry-derived bone mineral density are strongly correlated and that BCT accurately identifies the risk for future fracture. BCT may enable broader fracture risk assessment and facilitate timely interventions to reduce fracture risk in metastatic prostate cancer patients.

20.
Curr Osteoporos Rep ; 10(2): 132-40, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22492119

RESUMO

Osteoporosis heightens vertebral fragility owing to the biomechanical effects of diminished bone structure and composition. These biomechanical effects are only partially explained by loss in bone mass, so additional factors that are independent of bone mass are also thought to play an important role in vertebral fragility. Recent advances in imaging equipment, imaging-processing methods, and computational capacity allow researchers to quantify trabecular architecture in the vertebra at the level of the individual trabecular elements and to derive biomechanics-based measures of architecture that are independent of bone mass and density. These advances have shed light on the role of architecture in vertebral fragility. In addition to the adverse biomechanical consequences associated with trabecular thinning and loss of connectivity, a reduction in the number of vertical trabecular plates appears to be particularly harmful to vertebral strength. In the clinic, detailed architecture analysis is primarily applied to peripheral sites such as the distal radius and tibia. Analysis of trabecular architecture at these peripheral sites has shown mixed results for discriminating between patients with and without a vertebral fracture independent of bone mass, but has the potential to provide unique insight into the effects of therapeutic treatments. Overall, it does appear that trabecular architecture has an independent role on vertebral strength. Additional research is required to determine how and where architecture should be measured in vivo and whether assessment of trabecular architecture in a clinical setting improves prospective fracture risk assessment for the vertebra.


Assuntos
Osso e Ossos/patologia , Osteoporose/patologia , Coluna Vertebral/patologia , Fenômenos Biomecânicos , Densidade Óssea/fisiologia , Osso e Ossos/fisiopatologia , Humanos , Osteoporose/fisiopatologia , Coluna Vertebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA