Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 32(6): 3254-3263, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401611

RESUMO

Prenatal iron deficiency alters fetal developmental trajectories, which results in persistent changes in organ function. Here, we studied the effects of prenatal iron deficiency on fetal kidney and liver mitochondrial function. Pregnant Sprague-Dawley rats were fed partially or fully iron-restricted diets to induce a state of moderate or severe iron deficiency alongside iron-replete control rats. We assessed mitochondrial function via high-resolution respirometry and reactive oxygen species generation via fluorescence microscopy on gestational d 21. Hemoglobin levels were reduced in dams in the moderate (-31%) and severe groups (-54%) compared with controls, which was accompanied by 55% reductions in fetal hemoglobin levels in both moderate and severe groups versus controls. Male iron-deficient kidneys exhibited globally reduced mitochondrial content and respiration, as well as increased cytosolic superoxide and decreased NO. Female iron-deficient kidneys exhibited complex II down-regulation and increased mitochondrial oxidative stress. Male iron-deficient livers exhibited reduced complex IV respiration and increased cytosolic superoxide, whereas female liver tissues exhibited no alteration in oxidant levels or mitochondrial function. These findings indicate that prenatal iron deficiency causes changes in mitochondrial content and function as well as oxidant status in a sex- and organ-dependent manner, which may be an important mechanism that underlies the programming of cardiovascular disease.-Woodman, A. G., Mah, R., Keddie, D., Noble, R. M. N., Panahi, S., Gragasin, F. S., Lemieux, H., Bourque, S. L. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.


Assuntos
Feto/metabolismo , Deficiências de Ferro , Rim/embriologia , Fígado/embriologia , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo , Complicações na Gravidez/metabolismo , Caracteres Sexuais , Animais , Feminino , Feto/patologia , Rim/patologia , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/patologia , Gravidez , Complicações na Gravidez/patologia , Ratos , Ratos Sprague-Dawley
2.
Diagn Interv Imaging ; 103(9): 387-393, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35843841

RESUMO

Diagnostic radiologists play an important role in the evaluation of patients presenting with signs and symptoms of lower extremity peripheral vascular disease, including critical limb ischemia in both acute and chronic settings, and intermittent claudication. The complications associated with tissue and/or limb loss related to acute limb ischemia and critical limb ischemia of the lower extremity make rapid diagnosis and early intervention critical in the management of these patients. Computed tomography angiography (CTA) is an effective, widely available, easily reproducible, non-invasive imaging modality that offers a rapid and accurate means to diagnose and grade the extent of vascular disease. However, CTA run-off reports are usually dictated in free text form, and referring and treating physicians may be unsure whether an anatomic structure has been evaluated if it has not been specifically mentioned in the report. In this article, the vascular anatomy and anatomic variants of the lower extremity, the most common lower extremity vascular pathologies are reviewed and clinically important CTA imaging findings are outlined. This provides a framework for radiologists to accurately evaluate lower extremity vascular pathologies and convey clinically relevant imaging findings for management by vascular surgeons or interventional radiologists.


Assuntos
Angiografia por Tomografia Computadorizada , Doenças Vasculares Periféricas , Angiografia/métodos , Humanos , Isquemia , Extremidade Inferior/irrigação sanguínea , Extremidade Inferior/diagnóstico por imagem
3.
Cardiovasc Res ; 116(1): 183-192, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715197

RESUMO

AIMS: Perinatal iron deficiency (ID) alters developmental trajectories of offspring, predisposing them to cardiovascular dysfunction in later life. The mechanisms underlying this long-term programming of renal function have not been defined. We hypothesized perinatal ID causes hypertension and alters kidney metabolic function and morphology in a sex-dependent manner in adult offspring. Furthermore, we hypothesized these effects are exacerbated by chronic consumption of a high salt diet. METHODS AND RESULTS: Pregnant Sprague Dawley rats were fed either an iron-restricted or replete diet prior to and throughout pregnancy. Adult offspring were fed normal or high salt diets for 6 weeks prior to experimentation at 6 months of age. Blood pressure (BP) was assessed via indwelling catheters in anaesthetized offspring; kidney mitochondrial function was assessed via high-resolution respirometry; reactive oxygen species and nitric oxide were quantified via fluorescence microscopy. Adult males, but not females, exhibited increased systolic BP due to ID (P = 0.01) and high salt intake (P = 0.02). In males, but not in females, medullary mitochondrial content was increased by high salt (P = 0.003), while succinate-dependent respiration was reduced by ID (P < 0.05). The combination of perinatal ID and high salt reduced complex IV activity in the cortex of males (P = 0.01). Perinatal ID increased cytosolic superoxide generation (P < 0.001) concomitant with reduced nitric oxide bioavailability (P < 0.001) in male offspring, while high salt increased mitochondrial superoxide in the medulla (P = 0.04) and cytosolic superoxide within the cortex (P = 0.01). Male offspring exhibited glomerular basement membrane thickening (P < 0.05), increased collagen deposition (P < 0.05), and glomerular hypertrophy (interaction, P = 0.02) due to both perinatal ID and high salt. Female offspring exhibited no alterations in mitochondrial function or morphology due to either high salt or ID. CONCLUSION: Perinatal ID causes long-term sex-dependent alterations in renal metabolic function and morphology, potentially contributing to hypertension and increased cardiovascular disease risk.


Assuntos
Deficiências de Ferro , Ferro da Dieta , Nefropatias/etiologia , Rim/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Efeitos Tardios da Exposição Pré-Natal , Sódio na Dieta , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Rim/patologia , Rim/fisiopatologia , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/fisiopatologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Mitocôndrias/patologia , Óxido Nítrico/metabolismo , Estado Nutricional , Gravidez , Ratos Sprague-Dawley , Fatores Sexuais , Superóxidos/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA