RESUMO
PURPOSE: To develop and test an MRI coil assembly for imaging deep brain stimulation (DBS) at 3 T with a reduced level of local specific absorption rate of RF fields near the implant. METHODS: A mechanical rotatable linearly polarized birdcage transmitter outfitted with a 32-channel receive array was constructed. The coil performance and image quality were systematically evaluated using bench-level measurements and imaging performance tests, including SNR maps, array element noise correlation, and acceleration capabilities. Electromagnetic simulations and phantom experiments were performed with clinically relevant DBS device configurations to evaluate the reduction of specific absorption rate and temperature near the implant compared with a circular polarized body coil setup. RESULTS: The linearly polarized birdcage coil features a block-shaped low electric field region to be co-aligned with the implanted DBS lead trajectory, while the close-fit receive array enables imaging with high SNR and enhanced encoding capabilities. CONCLUSION: The 3T coil assembly, consisting of a rotating linear birdcage and a 32-channel close-fit receive array, showed DBS-conditioned imaging technology with substantially reduced heat generation at the DBS implants.
RESUMO
PURPOSE: To investigate whether spatiotemporal magnetic field monitoring can correct pronounced eddy current-induced artifacts incurred by strong diffusion-sensitizing gradients up to 300 mT/m used in high b-value diffusion-weighted (DW) EPI. METHODS: A dynamic field camera equipped with 16 1 H NMR field probes was first used to characterize field perturbations caused by residual eddy currents from diffusion gradients waveforms in a 3D multi-shot EPI sequence on a 3T Connectom scanner for different gradient strengths (up to 300 mT/m), diffusion directions, and shots. The efficacy of dynamic field monitoring-based image reconstruction was demonstrated on high-gradient strength, submillimeter resolution whole-brain ex vivo diffusion MRI. A 3D multi-shot image reconstruction framework was developed that incorporated the nonlinear phase evolution measured with the dynamic field camera. RESULTS: Phase perturbations in the readout induced by residual eddy currents from strong diffusion gradients are highly nonlinear in space and time, vary among diffusion directions, and interfere significantly with the image encoding gradients, changing the k-space trajectory. During the readout, phase modulations between odd and even EPI echoes become non-static and diffusion encoding direction-dependent. Superior reduction of ghosting and geometric distortion was achieved with dynamic field monitoring compared to ghosting reduction approaches such as navigator- and structured low-rank-based methods or MUSE followed by image-based distortion correction with the FSL tool "eddy." CONCLUSION: Strong eddy current artifacts characteristic of high-gradient strength DW-EPI can be well corrected with dynamic field monitoring-based image reconstruction.
Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imagem Ecoplanar/métodosRESUMO
PURPOSE: A 128-channel receive-only array for brain imaging at 7 T was simulated, designed, constructed, and tested within a high-performance head gradient designed for high-resolution functional imaging. METHODS: The coil used a tight-fitting helmet geometry populated with 128 loop elements and preamplifiers to fit into a 39 cm diameter space inside a built-in gradient. The signal-to-noise ratio (SNR) and parallel imaging performance (1/g) were measured in vivo and simulated using electromagnetic modeling. The histogram of 1/g factors was analyzed to assess the range of performance. The array's performance was compared to the industry-standard 32-channel receive array and a 64-channel research array. RESULTS: It was possible to construct the 128-channel array with body noise-dominated loops producing an average noise correlation of 5.4%. Measurements showed increased sensitivity compared with the 32-channel and 64-channel array through a combination of higher intrinsic SNR and g-factor improvements. For unaccelerated imaging, the 128-channel array showed SNR gains of 17.6% and 9.3% compared to the 32-channel and 64-channel array, respectively, at the center of the brain and 42% and 18% higher SNR in the peripheral brain regions including the cortex. For R = 5 accelerated imaging, these gains were 44.2% and 24.3% at the brain center and 86.7% and 48.7% in the cortex. The 1/g-factor histograms show both an improved mean and a tighter distribution by increasing the channel count, with both effects becoming more pronounced at higher accelerations. CONCLUSION: The experimental results confirm that increasing the channel count to 128 channels is beneficial for 7T brain imaging, both for increasing SNR in peripheral brain regions and for accelerated imaging.
Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Imagens de Fantasmas , Neuroimagem/métodos , Desenho de EquipamentoRESUMO
The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency (RF) coil solutions for ultrahigh field imaging; however, very few commercial and research 7-T RF coils currently exist for the spinal cord, and in particular, those with parallel transmission (pTx) capabilities. This work presents the design, testing, and validation of a pTx/Rx coil for the human neck and cervical/upper thoracic spinal cord. The pTx portion is composed of eight dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made up of twenty semiadaptable overlapping loops to produce high signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while also being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B1 + uniformity, power efficiency, and/or specific absorption rate efficiency. B1 + homogeneity, SNR, and g-factor were evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord.
Assuntos
Medula Cervical , Adulto , Humanos , Medula Cervical/diagnóstico por imagem , Imagens de Fantasmas , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Razão Sinal-RuídoRESUMO
Diffusion magnetic resonance imaging (dMRI) of whole ex vivo human brain specimens enables three-dimensional (3D) mapping of structural connectivity at the mesoscopic scale, providing detailed evaluation of fiber architecture and tissue microstructure at a spatial resolution that is difficult to access in vivo. To account for the short T2 and low diffusivity of fixed tissue, ex vivo dMRI is often acquired using strong diffusion-sensitizing gradients and multishot/segmented 3D echo-planar imaging (EPI) sequences to achieve high spatial resolution. However, the combination of strong diffusion-sensitizing gradients and multishot/segmented EPI readout can result in pronounced ghosting artifacts incurred by nonlinear spatiotemporal variations in the magnetic field produced by eddy currents. Such ghosting artifacts cannot be corrected with conventional correction solutions and pose a significant roadblock to leveraging human MRI scanners with ultrahigh gradients for ex vivo whole-brain dMRI. Here, we show that ghosting-correction approaches that correct for either polarity-related ghosting or shot-to-shot variations in a separate manner are suboptimal for 3D multishot diffusion-weighted EPI experiments in fixed human brain specimens using strong diffusion-sensitizing gradients on the 3-T Connectom MRI scanner, resulting in orientationally biased dMRI estimates. We apply a recently developed advanced k-space reconstruction method based on structured low-rank matrix (SLM) modeling that handles both polarity-related ghosting and shot-to-shot variation simultaneously, to mitigate artifacts in high-angular resolution multishot dMRI data acquired in several fixed human brain specimens at 0.7-0.8-mm isotropic spatial resolution using b-values up to 10,000 s/mm2 and gradient strengths up to 280 mT/m. We demonstrate the improved mapping of diffusion tensor imaging and fiber orientation distribution functions in key neuroanatomical areas distributed across the whole brain using SLM-based EPI ghost correction compared with alternative techniques.
Assuntos
Imagem de Tensor de Difusão , Imagem Ecoplanar , Humanos , Imagem Ecoplanar/métodos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Artefatos , Processamento de Imagem Assistida por Computador/métodosRESUMO
Tremendous efforts have been made in the last decade to advance cutting-edge MRI technology in pursuit of mapping structural connectivity in the living human brain with unprecedented sensitivity and speed. The first Connectom 3T MRI scanner equipped with a 300 mT/m whole-body gradient system was installed at the Massachusetts General Hospital in 2011 and was specifically constructed as part of the Human Connectome Project. Since that time, numerous technological advances have been made to enable the broader use of the Connectom high gradient system for diffusion tractography and tissue microstructure studies and leverage its unique advantages and sensitivity to resolving macroscopic and microscopic structural information in neural tissue for clinical and neuroscientific studies. The goal of this review article is to summarize the technical developments that have emerged in the last decade to support and promote large-scale and scientific studies of the human brain using the Connectom scanner. We provide a brief historical perspective on the development of Connectom gradient technology and the efforts that led to the installation of three other Connectom 3T MRI scanners worldwide - one in the United Kingdom in Cardiff, Wales, another in continental Europe in Leipzig, Germany, and the latest in Asia in Shanghai, China. We summarize the key developments in gradient hardware and image acquisition technology that have formed the backbone of Connectom-related research efforts, including the rich array of high-sensitivity receiver coils, pulse sequences, image artifact correction strategies and data preprocessing methods needed to optimize the quality of high-gradient strength diffusion MRI data for subsequent analyses. Finally, we review the scientific impact of the Connectom MRI scanner, including advances in diffusion tractography, tissue microstructural imaging, ex vivo validation, and clinical investigations that have been enabled by Connectom technology. We conclude with brief insights into the unique value of strong gradients for diffusion MRI and where the field is headed in the coming years.
Assuntos
Conectoma , Encéfalo/diagnóstico por imagem , China , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , HumanosRESUMO
PURPOSE: To extend the coverage of brain coil arrays to the neck and cervical-spine region to enable combined head and neck imaging at 7 Tesla (T) ultra-high field MRI. METHODS: The coil array structures of a 64-channel receive coil and a 16-channel transmit coil were merged into one anatomically shaped close-fitting housing. Transmit characteristics were evaluated in a B1+ -field mapping study and an electromagnetic model. Receive SNR and the encoding capability for accelerated imaging were evaluated and compared with a commercially available 7 T brain array coil. The performance of the head-neck array coil was demonstrated in human volunteers using high-resolution accelerated imaging. RESULTS: In the brain, the SNR matches the commercially available 32-channel brain array and showed improvements in accelerated imaging capabilities. More importantly, the constructed coil array improved the SNR in the face area, neck area, and cervical spine by a factor of 1.5, 3.4, and 5.2, respectively, in regions not covered by 32-channel brain arrays at 7 T. The interelement coupling of the 16-channel transmit coil ranged from -14 to -44 dB (mean = -19 dB, adjacent elements <-18 dB). The parallel 16-channel transmit coil greatly facilitates B1+ field shaping required for large FOV neuroimaging at 7 T. CONCLUSION: This new head-neck array coil is the first demonstration of a device of this nature used for combined full-brain, head-neck, and cervical-spine imaging at 7 T. The array coil is well suited to provide large FOV images, which potentially improves ultrahigh field neuroimaging applications for clinical settings.
Assuntos
Cabeça , Imageamento por Ressonância Magnética , Vértebras Cervicais , Desenho de Equipamento , Cabeça/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Razão Sinal-RuídoRESUMO
PURPOSE: To test an integrated "AC/DC" array approach at 7T, where B0 inhomogeneity poses an obstacle for functional imaging, diffusion-weighted MRI, MR spectroscopy, and other applications. METHODS: A close-fitting 7T 31-channel (31-ch) brain array was constructed and tested using combined Rx and ΔB0 shim channels driven by a set of rapidly switchable current amplifiers. The coil was compared to a shape-matched 31-ch reference receive-only array for RF safety, signal-to-noise ratio (SNR), and inter-element noise correlation. We characterize the coil array's ability to provide global and dynamic (slice-optimized) shimming using ΔB0 field maps and echo planar imaging (EPI) acquisitions. RESULTS: The SNR and average noise correlation were similar to the 31-ch reference array. Global and slice-optimized shimming provide 11% and 40% improvements respectively compared to baseline second-order spherical harmonic shimming. Birdcage transmit coil efficiency was similar for the reference and AC/DC array setups. CONCLUSION: Adding ΔB0 shim capability to a 31-ch 7T receive array can significantly boost 7T brain B0 homogeneity without sacrificing the array's rdiofrequency performance, potentially improving ultra-high field neuroimaging applications that are vulnerable to off-resonance effects.
Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-RuídoRESUMO
BACKGROUND: Absolute quantification of metabolites in MR spectroscopic imaging (MRSI) requires a stable reference signal of known concentration. The Electronic REference To access In vivo Concentrations (ERETIC) has shown great promise but has not been applied in patients and 3D MRSI. ERETIC hardware has not been integrated with receive arrays due to technical challenges, such as coil combination and unwanted coupling between multiple ERETIC and receive channels, for which we developed mitigation strategies. PURPOSE: To develop absolute quantification for whole-brain MRSI in glioma patients. STUDY TYPE: Prospective. POPULATION: Five healthy volunteers and three patients with isocitrate dehydrogenase mutant glioma (27% female). Calibration and coil loading phantoms. FIELD STRENGTH/SEQUENCE: A 3 T; Adiabatic spin-echo spiral 3D MRSI with real-time motion correction, Fluid Attenuated Inversion Recovery (FLAIR), Gradient Recalled Echo (GRE), Multi-echo Magnetization Prepared Rapid Acquisition of Gradient Echo (MEMPRAGE). ASSESSMENT: Absolute quantification was performed for five brain metabolites (total N-acetyl-aspartate [NAA]/creatine/choline, glutamine + glutamate, myo-inositol) and the oncometabolite 2-hydroxyglutarate using a custom-built 4x-ERETIC/8x-receive array coil. Metabolite quantification was performed with both EREIC and internal water reference methods. ERETIC signal was transmitted via optical link and used to correct coil loading. Inductive and radiative coupling between ERETIC and receive channels were measured. STATISTICAL TESTS: ERETIC and internal water methods for metabolite quantification were compared using Bland-Altman (BA) analysis and the nonparametric Mann-Whitney test. P < 0.05 was considered statistically significant. RESULTS: ERETIC could be integrated in receive arrays and inductive coupling dominated (5-886 times) radiative coupling. Phantoms show proportional scaling of the ERETIC signal with coil loading. The BA analysis demonstrated very good agreement (3.3% ± 1.6%) in healthy volunteers, while there was a large difference (36.1% ± 3.8%) in glioma tumors between metabolite concentrations by ERETIC and internal water quantification. CONCLUSION: Our results indicate that ERETIC integrated with receive arrays and whole-brain MRSI is feasible for brain metabolites quantification. Further validation is required to probe that ERETIC provides more accurate metabolite concentration in glioma patients. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.
Assuntos
Encéfalo , Glioma , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Eletrônica , Feminino , Glioma/diagnóstico por imagem , Glioma/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos Prospectivos , ÁguaRESUMO
In vivo diffusion-weighted magnetic resonance imaging is limited in signal-to-noise-ratio (SNR) and acquisition time, which constrains spatial resolution to the macroscale regime. Ex vivo imaging, which allows for arbitrarily long scan times, is critical for exploring human brain structure in the mesoscale regime without loss of SNR. Standard head array coils designed for patients are sub-optimal for imaging ex vivo whole brain specimens. The goal of this work was to design and construct a 48-channel ex vivo whole brain array coil for high-resolution and high b-value diffusion-weighted imaging on a 3T Connectome scanner. The coil was validated with bench measurements and characterized by imaging metrics on an agar brain phantom and an ex vivo human brain sample. The two-segment coil former was constructed for a close fit to a whole human brain, with small receive elements distributed over the entire brain. Imaging tests including SNR and G-factor maps were compared to a 64-channel head coil designed for in vivo use. There was a 2.9-fold increase in SNR in the peripheral cortex and a 1.3-fold gain in the center when compared to the 64-channel head coil. The 48-channel ex vivo whole brain coil also decreases noise amplification in highly parallel imaging, allowing acceleration factors of approximately one unit higher for a given noise amplification level. The acquired diffusion-weighted images in a whole ex vivo brain specimen demonstrate the applicability and advantage of the developed coil for high-resolution and high b-value diffusion-weighted ex vivo brain MRI studies.
Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Imagem de Difusão por Ressonância Magnética/instrumentação , Desenho de Equipamento , Humanos , Neuroimagem , Razão Sinal-RuídoRESUMO
The first phase of the Human Connectome Project pioneered advances in MRI technology for mapping the macroscopic structural connections of the living human brain through the engineering of a whole-body human MRI scanner equipped with maximum gradient strength of 300 mT/m, the highest ever achieved for human imaging. While this instrument has made important contributions to the understanding of macroscale connectional topology, it has also demonstrated the potential of dedicated high-gradient performance scanners to provide unparalleled in vivo assessment of neural tissue microstructure. Building on the initial groundwork laid by the original Connectome scanner, we have now embarked on an international, multi-site effort to build the next-generation human 3T Connectome scanner (Connectome 2.0) optimized for the study of neural tissue microstructure and connectional anatomy across multiple length scales. In order to maximize the resolution of this in vivo microscope for studies of the living human brain, we will push the diffusion resolution limit to unprecedented levels by (1) nearly doubling the current maximum gradient strength from 300 mT/m to 500 mT/m and tripling the maximum slew rate from 200 T/m/s to 600 T/m/s through the design of a one-of-a-kind head gradient coil optimized to minimize peripheral nerve stimulation; (2) developing high-sensitivity multi-channel radiofrequency receive coils for in vivo and ex vivo human brain imaging; (3) incorporating dynamic field monitoring to minimize image distortions and artifacts; (4) developing new pulse sequences to integrate the strongest diffusion encoding and highest spatial resolution ever achieved in the living human brain; and (5) calibrating the measurements obtained from this next-generation instrument through systematic validation of diffusion microstructural metrics in high-fidelity phantoms and ex vivo brain tissue at progressively finer scales with accompanying diffusion simulations in histology-based micro-geometries. We envision creating the ultimate diffusion MRI instrument capable of capturing the complex multi-scale organization of the living human brain - from the microscopic scale needed to probe cellular geometry, heterogeneity and plasticity, to the mesoscopic scale for quantifying the distinctions in cortical structure and connectivity that define cyto- and myeloarchitectonic boundaries, to improvements in estimates of macroscopic connectivity.
Assuntos
Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Neuroimagem/métodos , Imagens de FantasmasRESUMO
PURPOSE: Functional magnetic resonance imaging (fMRI) during infancy poses challenges due to practical, methodological, and analytical considerations. The aim of this study was to implement a hardware-related approach to increase subject compliance for fMRI involving awake infants. To accomplish this, we designed, constructed, and evaluated an adaptive 32-channel array coil. METHODS: To allow imaging with a close-fitting head array coil for infants aged 1-18 months, an adjustable head coil concept was developed. The coil setup facilitates a half-seated scanning position to improve the infant's overall scan compliance. Earmuff compartments are integrated directly into the coil housing to enable the usage of sound protection without losing a snug fit of the coil around the infant's head. The constructed array coil was evaluated from phantom data using bench-level metrics, signal-to-noise ratio (SNR) performances, and accelerated imaging capabilities for both in-plane and simultaneous multislice (SMS) reconstruction methodologies. Furthermore, preliminary fMRI data were acquired to evaluate the in vivo coil performance. RESULTS: Phantom data showed a 2.7-fold SNR increase on average when compared with a commercially available 32-channel head coil. At the center and periphery regions of the infant head phantom, the SNR gains were measured to be 1.25-fold and 3-fold, respectively. The infant coil further showed favorable encoding capabilities for undersampled k-space reconstruction methods and SMS techniques. CONCLUSIONS: An infant-friendly head coil array was developed to improve sensitivity, spatial resolution, accelerated encoding, motion insensitivity, and subject tolerance in pediatric MRI. The adaptive 32-channel array coil is well-suited for fMRI acquisitions in awake infants.
Assuntos
Imageamento por Ressonância Magnética , Vigília , Criança , Humanos , Lactente , Neuroimagem , Imagens de Fantasmas , Razão Sinal-RuídoRESUMO
PURPOSE: Three 64-channel cardiac coils with different detector array configurations were designed and constructed to evaluate acceleration capabilities in simultaneous multislice (SMS) imaging for 3T cardiac MRI. METHODS: Three 64-channel coil array configurations obtained from a simulation-guided design approach were constructed and systematically evaluated regarding their encoding capabilities for accelerated SMS cardiac acquisitions at 3T. Array configuration AUni-sized consists of uniformly distributed equally sized loops in an overlapped arrangement, BGapped uses a gapped array design with symmetrically distributed equally sized loops, and CDense has non-uniform loop density and size, where smaller elements were centered over the heart and larger elements were placed surrounding the target region. To isolate the anatomic variation from differences in the coil configurations, all three array coils were built with identical semi-adjustable housing segments. The arrays' performance was compared using bench-level measurements and imaging performance tests, including signal-to-noise ratio (SNR) maps, array element noise correlation, and SMS acceleration capabilities. Additionally, all cardiac array coils were evaluated on a healthy volunteer. RESULTS: The array configuration CDense with the non-uniformly distributed loop density showed the best overall cardiac imaging performance in both SNR and SMS encoding power, when compared to the other constructed arrays. The diffusion weighted cardiac acquisitions on a healthy volunteer support the favorable accelerated SNR performance of this array configuration. CONCLUSION: Our results indicate that optimized highly parallel cardiac arrays, such as the 64-channel coil with a non-uniform loop size and density improve highly accelerated SMS cardiac MRI in comparison to symmetrically distributed loop array designs.
Assuntos
Coração , Imageamento por Ressonância Magnética , Simulação por Computador , Desenho de Equipamento , Voluntários Saudáveis , Coração/diagnóstico por imagem , Humanos , Razão Sinal-RuídoRESUMO
Patients with deep brain stimulation devices highly benefit from postoperative MRI exams, however MRI is not readily accessible to these patients due to safety risks associated with RF heating of the implants. Recently we introduced a patient-adjustable reconfigurable coil technology that substantially reduced local SAR at tips of single isolated DBS leads during MRI at 1.5â¯T in 9 realistic patient models. This contribution extends our work to higher fields by demonstrating the feasibility of scaling the technology to 3T and assessing its performance in patients with bilateral leads as well as fully implanted systems. We developed patient-derived models of bilateral DBS leads and fully implanted DBS systems from postoperative CT images of 13 patients and performed finite element simulations to calculate SAR amplification at electrode contacts during MRI with a reconfigurable rotating coil at 3T. Compared to a conventional quadrature body coil, the reconfigurable coil system reduced the SAR on average by 83% for unilateral leads and by 59% for bilateral leads. A simple surgical modification in trajectory of implanted leads was demonstrated to increase the SAR reduction efficiency of the rotating coil to >90% in a patient with a fully implanted bilateral DBS system. Thermal analysis of temperature-rise around electrode contacts during typical brain exams showed a 15-fold heating reduction using the rotating coil, generating <1°C temperature rise during â¼4-min imaging with high-SAR sequences where a conventional CP coil generated >10°C temperature rise in the tissue for the same flip angle.
Assuntos
Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Estimulação Encefálica Profunda/normas , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/normas , Medicina de PrecisãoRESUMO
Many studies have investigated the development of face-, scene-, and body-selective regions in the ventral visual pathway. This work has primarily focused on comparing the size and univariate selectivity of these neural regions in children versus adults. In contrast, very few studies have investigated the developmental trajectory of more distributed activation patterns within and across neural regions. Here, we scanned both children (ages 5-7) and adults to test the hypothesis that distributed representational patterns arise before category selectivity (for faces, bodies, or scenes) in the ventral pathway. Consistent with this hypothesis, we found mature representational patterns in several ventral pathway regions (e.g., FFA, PPA, etc.), even in children who showed no hint of univariate selectivity. These results suggest that representational patterns emerge first in each region, perhaps forming a scaffold upon which univariate category selectivity can subsequently develop. More generally, our findings demonstrate an important dissociation between category selectivity and distributed response patterns, and raise questions about the relative roles of each in development and adult cognition.
Assuntos
Desenvolvimento Infantil/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Vias Visuais , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/fisiologiaRESUMO
Access to MRI is limited for patients with deep brain stimulation (DBS) implants due to safety hazards, including radiofrequency (RF) heating of tissue surrounding the leads. Computational models provide an exquisite tool to explore the multi-variate problem of RF heating and help better understand the interaction of electromagnetic fields and biological tissues. This paper presents a computational approach to assess RF-induced heating, in terms of specific absorption rate (SAR) in the tissue, around the tip of bilateral DBS leads during MRI at 64MHz/1.5â¯T and 127â¯MHz/3T. Patient-specific realistic lead models were constructed from post-operative CT images of nine patients operated for sub-thalamic nucleus DBS. Finite element method was applied to calculate the SAR at the tip of left and right DBS contact electrodes. Both transmit head coils and transmit body coils were analyzed. We found a substantial difference between the SAR and temperature rise at the tip of right and left DBS leads, with the lead contralateral to the implanted pulse generator (IPG) exhibiting up to 7 times higher SAR in simulations, and up to 10 times higher temperature rise during measurements. The orientation of incident electric field with respect to lead trajectories was explored and a metric to predict local SAR amplification was introduced. Modification of the lead trajectory was shown to substantially reduce the heating in phantom experiments using both conductive wires and commercially available DBS leads. Finally, the surgical feasibility of implementing the modified trajectories was demonstrated in a patient operated for bilateral DBS.
Assuntos
Estimulação Encefálica Profunda , Eletrodos Implantados , Temperatura Alta , Imageamento por Ressonância Magnética/efeitos adversos , Modelos Teóricos , Simulação por Computador , Estimulação Encefálica Profunda/instrumentação , Campos Eletromagnéticos , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de RádioRESUMO
The SwissFEL soft X-ray free-electron laser (FEL) beamline Athos will be ready for user operation in 2021. Its design includes a novel layout of alternating magnetic chicanes and short undulator segments. Together with the APPLE X architecture of undulators, the Athos branch can be operated in different modes producing FEL beams with unique characteristics ranging from attosecond pulse length to high-power modes. Further space has been reserved for upgrades including modulators and an external seeding laser for better timing control. All of these schemes rely on state-of-the-art technologies described in this overview. The optical transport line distributing the FEL beam to the experimental stations was designed with the whole range of beam parameters in mind. Currently two experimental stations, one for condensed matter and quantum materials research and a second one for atomic, molecular and optical physics, chemical sciences and ultrafast single-particle imaging, are being laid out such that they can profit from the unique soft X-ray pulses produced in the Athos branch in an optimal way.
RESUMO
PURPOSE: To evaluate the local specific absorption rate (SAR) and heating around retained cardiac leads during MRI at 64 MHz (1.5T) and 127 MHz (3T) as a function of RF coil type and imaging landmark. METHODS: Numerical models of retained cardiac leads were built from CT and X-ray images of 6 patients with retained cardiac leads. Electromagnetic simulations and bio-heat modeling were performed with MRI RF body and head coils tuned to 64 MHz and 127 MHz and positioned at 9 different imaging landmarks covering an area from the head to the lower limbs. RESULTS: For all patients and at both 1.5T and 3T, local transmit head coils produced negligible temperature rise ( Δ T < 0.1 ° C ) for â â B 1 + â â ≤ 3 µ T . For body imaging with quadrature-driven coils at 1.5T, Δ T during a 10-min scan remained < 3°C at all imaging landmarks for â â B 1 + â â ≤ 3 µ T and <6°C for â â B 1 + â â ≤ 4 µ T . For body imaging at 3T, Δ T during a 10-min scan remained < 6°C at all imaging landmarks for â â B 1 + â â ≤ 2 µ T . For shorter pulse sequences up to 2 min, Δ T remained < 6°C for â â B 1 + â â ≤ 3 µ T . CONCLUSION: For the models based on 6 patients studied, simulations suggest that MRI could be performed safely using a local head coil at both 1.5T and 3T, and with a body coil at 1.5T with pulses that produced â â B 1 + â â ≤ 4 µ T . MRI at 3T could be performed safely in these patients using pulses with â â B 1 + â â ≤ 2 µ T .
Assuntos
Desfibriladores Implantáveis/efeitos adversos , Remoção de Dispositivo , Corpos Estranhos , Insuficiência Cardíaca/cirurgia , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ondas de Rádio , Adulto , Algoritmos , Simulação por Computador , Feminino , Análise de Elementos Finitos , Frequência Cardíaca , Transplante de Coração , Temperatura Alta , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Perna (Membro)/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Marca-Passo Artificial/efeitos adversos , Segurança do Paciente , Complicações Pós-Operatórias/cirurgia , Próteses e Implantes , Reprodutibilidade dos Testes , Estudos Retrospectivos , Adulto JovemRESUMO
Patients with implanted medical devices such as deep brain stimulation or spinal cord stimulation are often unable to receive magnetic resonance imaging (MRI). This is because once the device is within the radiofrequency (RF) field of the MRI scanner, electrically conductive leads act as antenna, amplifying the RF energy deposition in the tissue and causing possible excessive tissue heating. Here we propose a novel concept in lead design in which 40cm lead wires are coated with a ~1.2mm layer of high dielectric constant material (155 < ε r < 250) embedded in a weakly conductive insulation (σ = 20S/m). The technique called High-Dielectric Capacitive Bleeding of Current, or CBLOC, works by forming a distributed capacitance along the lengths of the lead, efficiently dissipating RF energy before it reaches the exposed tip. Measurements during RF exposure at 64 MHz and 123 MHz demonstrated that CBLOC leads generated 20-fold less heating at 1.5 T, and 40-fold less heating at 3 T compared to control leads. Numerical simulations of RF exposure at 297 MHz (7T) predicted a 15-fold reduction in specific absorption rate (SAR) of RF energy around the tip of CBLOC leads compared to control leads.
RESUMO
PURPOSE: To identify novel concepts for RF-shim loop architectures suitable for 7T made of two concentric conducting loops fulfilling RF and DC functions, respectively, and to determine their relative SNR performance. The goal is to minimize interference between the two systems while making efficient use of the space closest to the body. THEORY: We show by means of theoretical derivation of the frequency spectrum that the proposed two-loop structure exhibits an anti-resonant null and a resonant peak in the frequency domain. METHODS: The proposed structure is comprised of two concentric wire loops either arranged as nested loops or in the form of a coaxial cable, in which the two conductors carry the RF and shim signals, respectively. We use theory, simulation, and phantom measurements to obtain frequency spectra and SNR maps for the proposed structures. RESULTS: Retained SNR is found to be 75% in the coaxial loop and ranges from 57% to 67% in three different coaxial configurations. We have found both implementations to be a viable concept for the use in RF-shim devices if remaining SNR limitations can be overcome. CONCLUSIONS: We have investigated two new design modalities in 7T RF-shim coil design that separate the RF and shim conductors such that the previously proposed toroidal chokes are eliminated - thereby removing undesired additional loss, bulk, and design complexity.