Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Front Environ Sci ; 12: 1-19, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516348

RESUMO

Continued large-scale public investment in declining ecosystems depends on demonstrations of "success". While the public conception of "success" often focuses on restoration to a pre-disturbance condition, the scientific community is more likely to measure success in terms of improved ecosystem health. Using a combination of literature review, workshops and expert solicitation we propose a generalized framework to improve ecosystem health in highly altered river basins by reducing ecosystem stressors, enhancing ecosystem processes and increasing ecosystem resilience. We illustrate the use of this framework in the Mississippi-Atchafalaya River Basin (MARB) of the central United States (U.S.), by (i) identifying key stressors related to human activities, and (ii) creating a conceptual ecosystem model relating those stressors to effects on ecosystem structure and processes. As a result of our analysis, we identify a set of landscape-level indicators of ecosystem health, emphasizing leading indicators of stressor removal (e.g., reduced anthropogenic nutrient inputs), increased ecosystem function (e.g., increased water storage in the landscape) and increased resilience (e.g., changes in the percentage of perennial vegetative cover). We suggest that by including these indicators, along with lagging indicators such as direct measurements of water quality, stakeholders will be better able to assess the effectiveness of management actions. For example, if both leading and lagging indicators show improvement over time, then management actions are on track to attain desired ecosystem condition. If, however, leading indicators are not improving or even declining, then fundamental challenges to ecosystem health remain to be addressed and failure to address these will ultimately lead to declines in lagging indicators such as water quality. Although our model and indicators are specific to the MARB, we believe that the generalized framework and the process of model and indicator development will be valuable in an array of altered river basins.

2.
WIREs Water ; 4(1): 1-17, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30294444

RESUMO

The isotopic composition of water transmitted by the canopy as throughfall or stemflow reflects a suite of processes modifying rainfall. Factors that affect isotopic composition of canopy water include fractionation, exchange between liquid and vapor, and selective transmittance of temporally varying rainfall along varying canopy flowpaths. Despite frequent attribution of canopy effects on isotopic composition of throughfall to evaporative fractionation, data suggest exchange and selection are more likely the dominant factors. Temporal variability in canopy effects is generally consistent with either exchange or selection, but spatial variability is generally more consistent with selection. However, most investigations to date have not collected data sufficient to unambiguously identify controlling processes. Using isotopic data for improved understanding of physical processes and water routing in the canopy requires recognizing how these factors and processes lead to patterns of isotopic variability, and then applying this understanding towards focused data collection and analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA