Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Appl Clin Med Phys ; 24(9): e14054, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37287131

RESUMO

PURPOSE: To compare the superficial dose when using brass mesh bolus (BMB), no bolus, or 3 mm tissue-equivalent bolus with a pseudo-flash volumetric modulated arc therapy (VMAT) breast treatment planning technique. METHODS: Two different beam arrangements for right-sided irradiation and one beam arrangement for bilateral irradiation were planned on an inhomogeneous thorax phantom in accordance with our clinical practice for VMAT postmastectomy radiotherapy (PMRT). Plans were optimized using pseudo-flash and representative critical organ optimization structures were used to shape the dose. Plans were delivered without bolus, with 3 mm tissue-equivalent bolus (TEB), or with one-layer BMB. Optically stimulated luminescence dosimeter (OSLD) and radiochromic film measurements were taken and analyzed to determine the superficial dose in each case and the relative enhancement from the no bolus delivery. RESULTS: Superficial dose measured with OSLDs was found to be 76.4 ± 4.5%, 103.0 ± 6.1%, and 98.1 ± 5.8% of prescription for no physical bolus (NB), TEB, and BMB, respectively. Superficial dose was observed to increase from lateral to medial points when measured with film. However, the relative increase in superficial dose from NB was consistent across the profile with an increase of 43 ± 2.1% and 34 ± 3.3% of prescription for TEB and BMB, respectively. The results are in good agreement with expectations from the literature and the experience with tangential radiotherapy. CONCLUSION: Three millimeter TEB and one-layer BMB were shown to provide similar enhancement to the superficial dose compared to delivery without bolus. BMB, which does not significantly affect dose at depth and is more conformal to the patient surface, is an acceptable alternative to 3 mm TEB for chest wall PMRT patients treated with pseudo-flash PMRT.


Assuntos
Neoplasias da Mama , Radioterapia de Intensidade Modulada , Parede Torácica , Humanos , Feminino , Radioterapia de Intensidade Modulada/métodos , Parede Torácica/efeitos da radiação , Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Mastectomia/métodos
2.
J Appl Clin Med Phys ; 23(12): e13801, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36316805

RESUMO

Online adaptive radiotherapy platforms present a unique challenge for commissioning as guidance is lacking and specialized adaptive equipment, such as deformable phantoms, are rare. We designed a novel adaptive commissioning process consisting of end-to-end tests using standard clinical resources. These tests were designed to simulate anatomical changes regularly observed at patient treatments. The test results will inform users of the magnitude of uncertainty from on-treatment changes during the adaptive workflow and the limitations of their systems. We implemented these tests for the cone-beam computed tomography (CT)-based Varian Ethos online adaptive platform. Many adaptive platforms perform online dose calculation on a synthetic CT (synCT). To assess the impact of the synCT generation and online dose calculation on dosimetric accuracy, we conducted end-to-end tests using commonly available equipment: a CIRS IMRT Thorax phantom, PinPoint ionization chamber, Gafchromic film, and bolus. Four clinical scenarios were evaluated: weight gain and weight loss were simulated by adding and removing bolus, internal target shifts were simulated by editing the CTV during the adaptive workflow to displace it, and changes in gas were simulated by removing and reinserting rods in varying phantom locations. The effect of overriding gas pockets during planning was also assessed. All point dose measurements agreed within 2.7% of the calculated dose, with one exception: a scenario simulating gas present in the planning CT, not overridden during planning, and dissipating at treatment. Relative film measurements passed gamma analysis (3%/3 mm criteria) for all scenarios. Our process validated the Ethos dose calculation for online adapted treatment plans. Based on our results, we made several recommendations for our clinical adaptive workflow. This commissioning process used commonly available equipment and, therefore, can be applied in other clinics for their respective online adaptive platforms.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada por Raios X , Radiometria , Planejamento da Radioterapia Assistida por Computador/métodos , Imagens de Fantasmas
3.
Nano Lett ; 20(11): 8135-8140, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33048550

RESUMO

Fabrication of ultrathin metal nanostructures usually requires some combination of high-vacuum deposition and postgrowth processing, which precludes access to nanostructures of ultrasmall cross sections for most materials. DNA nanowires (NWs) are versatile insulating templates with intrinsic sub-10 nm line width. Here, we demonstrate a method of DNA template fabrication with precise control over the location and orientation of the DNA NWs. We further demonstrate that this template can be used to support formation of ultrathin metal NWs for derivative nanodevices: a metal is incrementally deposited, and electrical transport measurement is performed in situ at each step. The results show a homogeneous metal NW is obtained at a thickness as small as 0.9 nm with a cross-section of only a few nm2. The high degree of control in the location, separation, and orientation of the DNA NWs affords this method great promise in fabricating complex nanodevices based on metal NWs.


Assuntos
Nanoestruturas , Nanofios , DNA , Metais
4.
Nano Lett ; 18(7): 4386-4395, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29898367

RESUMO

The interest in spin transport in nanoscopic semiconductor channels is driven by both the inevitable miniaturization of spintronics devices toward nanoscale and the rich spin-dependent physics the quantum confinement engenders. For such studies, the all-important issue of the ferromagnet/semiconductor (FM/SC) interface becomes even more critical at nanoscale. Here we elucidate the effects of the FM/SC interface on electrical spin injection and detection at nanoscale dimensions, utilizing a unique type of Si nanowires (NWs) with an inherent axial doping gradient. Two-terminal and nonlocal four-terminal lateral spin-valve measurements were performed using different combinations from a series of FM contacts positioned along the same NW. The data are analyzed with a general model of spin accumulation in a normal channel under electrical spin injection from a FM, which reveals a distinct correlation of decreasing spin-valve signal with increasing injector junction resistance. The observation is attributed to the diminishing contribution of the d-electrons in the FM to the injected current spin polarization with increasing Schottky barrier width. The results demonstrate that there is a window of interface parameters for optimal spin injection efficiency and current spin polarization, which provides important design guidelines for nanospintronic devices with quasi-one-dimensional semiconductor channels.

5.
Nanotechnology ; 28(5): 055701, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28008886

RESUMO

Nanomaterials made from binary metal oxides are of increasing interest because of their versatility in applications from flexible electronics to portable chemical and biological sensors. Controlling the electrical properties of these materials is the first step in device implementation. Tin dioxide (SnO2) nanobelts (NB) synthesized by the vapor-liquid-solid mechanism have shown much promise in this regard. We explore the modification of devices prepared with single crystalline NBs by thermal annealing in vacuum and oxygen, resulting in a viable field-effect transistor (FET) for numerous applications at ambient temperature. An oxygen annealing step initially increases the device conductance by up to a factor of 105, likely through the modification of the surface defects of the NB, leading to Schottky barrier limited devices. A multi-step annealing procedure leads to further increase of the conductance by approximately 350% and optimization of the electronic properties. The effects of each step is investigated systematically on a single NB. The optimization of the electrical properties of the NBs makes possible the consistent production of channel-limited FETs and control of the device performance. Understanding these improvements on the electrical properties over the as-grown materials provides a pathway to enhance and tailor the functionalities of tin oxide nanostructures for a wide variety of optical, electronic, optoelectronic, and sensing applications that operate at room temperature.

6.
Langmuir ; 32(16): 4022-33, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27018432

RESUMO

Centimeter-scale gold nanoparticle (Au NP) monolayer films have been fabricated using a water/organic solvent self-assembly strategy. A recently developed approach, drain to deposit, is demonstrated to be most effective in transferring the Au NP films from the water/organic solvent interface to various solid substrates while maintaining their integrity. The interparticle spacing was tuned from 1.4 to 3.1 nm using alkylamine ligands of different lengths. The ordering of the films increased with increasing ligand length. The surface plasmon resonance and the in-plane electrical conductivity of the Au NP films both exhibit an exponential dependence on the interparticle spacing. These findings show great potential in scaling up the manufacturing of high-performance optical and electronic devices based on two-dimensional metallic nanoparticle superlattices.

7.
Pract Radiat Oncol ; 14(2): e117-e131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37661040

RESUMO

Traditionally, external beam radiotherapy (EBRT) for localized prostate cancer (PCa) involved lengthy courses with low daily doses. However, advancements in radiation delivery and a better understanding of prostate radiobiology have enabled the development of shorter courses of EBRT. Ultrahypofractionated radiotherapy, administering doses greater than 5 Gy per fraction, is now considered a standard of care regimen for localized PCa, particularly for intermediate-risk disease. Stereotactic body radiotherapy (SBRT), a specific type of ultrahypofractionated radiotherapy employing advanced planning, imaging, and treatment technology to deliver in five or fewer fractions, is gaining prominence as a cost-effective, convenient, and safe alternative to longer radiotherapy courses. It is crucial to address practical considerations related to patient selection, fractionation scheme, target delineation, and planning objectives. This is especially important in challenging clinical situations where clear evidence for guidance may be lacking. The Radiosurgery Society endorses this case-based guide with the aim of providing a practical framework for delivering SBRT to the intact prostate, exemplified by two case studies. The article will explore common SBRT dose/fractionation schemes and dose constraints for organs-at-risk. Additionally, it will review existing evidence and expert opinions on topics such as SBRT dose escalation, the use of rectal spacers, the role of androgen deprivation therapy in the context of SBRT, SBRT in special patient populations (e.g., high-risk disease, large prostate, high baseline urinary symptom burdens, and inflammatory bowel disease), as well as new imaging-guidance techniques like Magnetic Resonance Imaging for SBRT delivery.


Assuntos
Neoplasias da Próstata , Radioterapia (Especialidade) , Radiocirurgia , Masculino , Humanos , Neoplasias da Próstata/radioterapia , Antagonistas de Androgênios , Próstata
8.
Med Phys ; 50(5): 3103-3116, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893292

RESUMO

BACKGROUND: Real-time motion monitoring (RTMM) is necessary for accurate motion management of intrafraction motions during radiation therapy (RT). PURPOSE: Building upon a previous study, this work develops and tests an improved RTMM technique based on real-time orthogonal cine magnetic resonance imaging (MRI) acquired during magnetic resonance-guided adaptive RT (MRgART) for abdominal tumors on MR-Linac. METHODS: A motion monitoring research package (MMRP) was developed and tested for RTMM based on template rigid registration between beam-on real-time orthogonal cine MRI and pre-beam daily reference 3D-MRI (baseline). The MRI data acquired under free-breathing during the routine MRgART on a 1.5T MR-Linac for 18 patients with abdominal malignancies of 8 liver, 4 adrenal glands (renal fossa), and 6 pancreas cases were used to evaluate the MMRP package. For each patient, a 3D mid-position image derived from an in-house daily 4D-MRI was used to define a target mask or a surrogate sub-region encompassing the target. Additionally, an exploratory case reviewed for an MRI dataset of a healthy volunteer acquired under both free-breathing and deep inspiration breath-hold (DIBH) was used to test how effectively the RTMM using the MMRP can address through-plane motion (TPM). For all cases, the 2D T2/T1-weighted cine MRIs were captured with a temporal resolution of 200 ms interleaved between coronal and sagittal orientations. Manually delineated contours on the cine frames were used as the ground-truth motion. Common visible vessels and segments of target boundaries in proximity to the target were used as anatomical landmarks for reproducible delineations on both the 3D and the cine MRI images. Standard deviation of the error (SDE) between the ground-truth and the measured target motion from the MMRP package were analyzed to evaluate the RTMM accuracy. The maximum target motion (MTM) was measured on the 4D-MRI for all cases during free-breathing. RESULTS: The mean (range) centroid motions for the 13 abdominal tumor cases were 7.69 (4.71-11.15), 1.73 (0.81-3.05), and 2.71 (1.45-3.93) mm with an overall accuracy of <2 mm in the superior-inferior (SI), the left-right (LR), and the anterior-posterior (AP) directions, respectively. The mean (range) of the MTM from the 4D-MRI was 7.38 (2-11) mm in the SI direction, smaller than the monitored motion of centroid, demonstrating the importance of the real-time motion capture. For the remaining patient cases, the ground-truth delineation was challenging under free-breathing due to the target deformation and the large TPM in the AP direction, the implant-induced image artifacts, and/or the suboptimal image plane selection. These cases were evaluated based on visual assessment. For the healthy volunteer, the TPM of the target was significant under free-breathing which degraded the RTMM accuracy. RTMM accuracy of <2 mm was achieved under DIBH, indicating DIBH is an effective method to address large TPM. CONCLUSIONS: We have successfully developed and tested the use of a template-based registration method for an accurate RTMM of abdominal targets during MRgART on a 1.5T MR-Linac without using injected contrast agents or radio-opaque implants. DIBH may be used to effectively reduce or eliminate TPM of abdominal targets during RTMM.


Assuntos
Neoplasias Abdominais , Imagem Cinética por Ressonância Magnética , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Neoplasias Abdominais/diagnóstico por imagem , Neoplasias Abdominais/radioterapia , Respiração
9.
Med Phys ; 47(7): 2814-2825, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32277477

RESUMO

PURPOSE: To evaluate the performance of the first clinical real-time motion tracking and compensation system using multileaf collimator (MLC) and jaws during helical tomotherapy delivery. METHODS: Appropriate mechanical and dosimetry tests were performed on the first clinical real-time motion tracking system (Synchrony on Radixact, Accuray Inc) recently installed in our institution. kV radiography dose was measured by CTDIw using a pencil chamber. Changes of beam characteristics with jaw offset and MLC leaf shift were evaluated. Various dosimeters and phantoms including A1SL ion chamber (Standard Imaging), Gafchromic EBT3 films (Ashland), TomoPhantom (Med Cal), ArcCheck (Sun Nuclear), Delta4 (ScandiDos), with fiducial or high contrast inserts, placed on two dynamical motion platforms (CIRS dynamic motion-CIRS, Hexamotion-ScandiDos), were used to assess the dosimetric accuracy of the available Synchrony modalities: fiducial tracking with nonrespiratory motion (FNR), fiducial tracking with respiratory modeling (FR), and fiducial free (e.g., lung tumor tracking) with respiratory modeling (FFR). Motion detection accuracy of a tracking target, defined as the difference between the predicted and instructed target positions, was evaluated with the root mean square (RMS). The dose accuracy of motion compensation was evaluated by verifying the dose output constancy and by comparing measured and planned (predicted) three-dimensional (3D) dose distributions based on gamma analysis. RESULTS: The measured CTDIw for a single radiograph with a 120 kVp and 1.6 mAs protocol was 0.084 mGy, implying a low imaging dose of 8.4 mGy for a typical Synchrony motion tracking fraction with 100 radiographs. The dosimetric effect of the jaw swing or MLC leaf shift was minimal on depth dose (<0.5%) and was <2% on both beam profile width and output for typical motions. The motion detection accuracies, that is, RMS, were 0.84, 1.13, and 0.48 mm for FNR, FR, and FFR, respectively, well within the 1.5 mm recommended tolerance. Dose constancy with Synchrony was found to be within 2%. The gamma passing rates of 3D dose measurements for a variety of Synchrony plans were well within the acceptable level. CONCLUSIONS: The motion tracking and compensation using kV radiography, MLC shifting, and jaw swing during helical tomotherapy delivery was tested to be mechanically and dosimetrically accurate for clinical use.


Assuntos
Radioterapia de Intensidade Modulada , Arcada Osseodentária , Movimento (Física) , Imagens de Fantasmas , Radiometria , Planejamento da Radioterapia Assistida por Computador
10.
Med Phys ; 47(8): 3554-3566, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32402111

RESUMO

PURPOSE: Real-time high soft-tissue contrast magnetic resonance imaging (MRI) from the MR-Linac offers the best opportunity for accurate motion tracking during radiation therapy delivery via high-frequency two-dimensional (2D) cine imaging. This work investigates the efficacy of real-time organ motion tracking based on the registration of MRI acquired on MR-Linac. METHODS: Algorithms based on image intensity were developed to determine the three-dimensional (3D) translation of abdominal targets. 2D and 3D abdominal MRIs were acquired for 10 healthy volunteers using a high-field MR-Linac. For each volunteer, 3D respiration-gated T2 and 2D T2/T1-weighted cine in sagittal, coronal, and axial planes with a planar temporal resolution of 0.6 for 60 s was captured. Datasets were also collected on MR-compatible physical and virtual four-dimensional (4D) motion phantoms. Target contours for the liver and pancreas from the 3D T2 were populated to the cine and assumed as the ground-truth motion. We performed image registration using a research software to track the target 3D motion. Standard deviations of the error (SDE) between the ground-truth and tracking were analyzed. RESULTS: Algorithms using a research software were demonstrated to be capable of tracking arbitrary targets in the abdomen at 5 Hz with an overall accuracy of 0.6 mm in phantom studies and 2.1 mm in volunteers. However, this value is subject to patient-specific considerations, namely motion amplitude. Calculation times of < 50 ms provide a pathway of real-time motion tracking integration. A major challenge in using 2D cine MRI to track the target is handling the full 3D motion of the target. CONCLUSIONS: Feasibility to track organ motion using intensity-based registration of MRIs was demonstrated for abdominal targets. Tracking accuracy of about 2 mm was achieved for the motion of the liver and pancreatic head for typical patient motion. Further development is ongoing to improve the tracking algorithm for large and complex motions.


Assuntos
Imageamento Tridimensional , Imagem Cinética por Ressonância Magnética , Abdome/diagnóstico por imagem , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética , Movimento (Física) , Movimento , Imagens de Fantasmas , Respiração
11.
ACS Appl Mater Interfaces ; 9(13): 12046-12053, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28274114

RESUMO

In comparison to conventional (channel-limited) field-effect transistors (FETs), Schottky barrier-limited FETs possess some unique characteristics which make them attractive candidates for some electronic and sensing applications. Consequently, modulation of the nano Schottky barrier at a metal-semiconductor interface promises higher performance for chemical and biomolecular sensor applications when compared to conventional FETs with ohmic contacts. However, the fabrication and optimization of devices with a combination of ideal ohmic and Schottky contacts as the source and drain, respectively, present many challenges. We address this issue by utilizing Si nanowires (NWs) synthesized by a chemical vapor deposition process which yields a pronounced doping gradient along the length of the NWs. Devices with a series of metal contacts on a single Si NW are fabricated in a single lithography and metallization process. The graded doping profile of the NW is manifested in monotonic increases in the channel and junction resistances and variation of the nature of the contacts from ohmic to Schottky of increasing effective barrier height along the NW. Hence multiple single Schottky junction-limited FETs with extreme asymmetry and high reproducibility are obtained on an individual NW. A definitive correlation between increasing Schottky barrier height and enhanced gate modulation is revealed. Having access to systematically varying Schottky barrier contacts on the same NW device provides an ideal platform for identifying optimal device characteristics for sensing and electronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA