Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37690081

RESUMO

In mammals, especially rodents, social behaviours, such as parenting, territoriality or mate attraction, are largely based on olfactory communication through chemosignals. These behaviours are mediated by species-specific chemosignals, including small organic molecules and proteins that are secreted in the urine or in various fluids from exocrine glands. Chemosignal detection is mainly ensured by olfactory neurons in two specific sensory organs, the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). This study aimed to characterise the olfactory communication in the fossorial ecotype of the water voles, Arvicola terrestris. We first measured the olfactory investigation of urine and lateral scent gland secretions from conspecifics. Our results showed that water voles can discriminate the sex of conspecifics based on the smell of urine, and that urinary male odour is attractive for female voles. Then, we demonstrated the ability of the VNO and MOE to detect volatile organic compounds (VOCs) found in water vole secretions using live-cell calcium imaging in dissociated cells. Finally, we evaluated the attractiveness of two mixtures of VOCs from urine or lateral scent glands in the field during a cyclical outbreak of vole populations.

2.
Biol Lett ; 19(2): 20220441, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36815586

RESUMO

Most small rodent species display cyclic fluctuations in their population density. The mechanisms behind these cyclical variations are not yet clearly understood. Density-dependent effects on reproductive function could affect these population variations. The fossorial water vole ecotype, Arvicola terrestris, exhibits multi-year cyclical dynamics with outbreak peaks. Here, we monitored different water vole populations over 3 years, in spring and autumn, to evaluate whether population density is related to male reproductive physiology. Our results show an effect of season and inter-annual factors on testis mass, plasmatic testosterone level, and androgen-dependent seminal vesicle mass. By contrast, population density does not affect any of these parameters, suggesting a lack of modulation of population dynamics by population density.


Assuntos
Arvicolinae , Animais , Masculino , Densidade Demográfica , Estações do Ano , Dinâmica Populacional , Arvicolinae/fisiologia
3.
Reprod Fertil Dev ; 35(4): 307-320, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36593258

RESUMO

CONTEXT: Mammalian target of rapamycin complex 1 (mTORC1) is an essential sensor that regulates fundamental biological processes like cell growth, proliferation and energy metabolism. The treatment of disease by sirolimus, a mTORC1 inhibitor, causes adverse effects, such as female fertility disorders. AIMS: The objective of the study was to decipher the reproductive consequences of a downregulation of mTORC1 in the hypothalamus. METHODS: The reduced expression of mTORC1 was induced after intracerebroventricular injection of lentivirus expressing a short hairpin RNA (shRNA) against regulatory associated protein of TOR (raptor) in adult female mice (ShRaptor mice). KEY RESULTS: The ShRaptor mice were fertile and exhibited a 15% increase in the litter size compared with control mice. The histological analysis showed an increase in antral, preovulatory follicles and ovarian cysts. In the hypothalamus, the GnRH mRNA and FSH levels in ShRaptor mice were significantly elevated. CONCLUSIONS: These results support the hypothesis that mTORC1 in the central nervous system participates in the regulation of female fertility and ovarian function by influencing the GnRH neuronal activity. IMPLICATIONS: These results suggest that a lower mTORC1 activity directly the central nervous system leads to a deregulation in the oestrous cycle and an induction of ovarian cyst development.


Assuntos
Cistos Ovarianos , Aves Predatórias , Feminino , Animais , Camundongos , Humanos , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fatores de Transcrição/metabolismo , RNA Interferente Pequeno , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Aves Predatórias/genética , Aves Predatórias/metabolismo , Mamíferos/genética
4.
Proc Natl Acad Sci U S A ; 116(11): 5135-5143, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804203

RESUMO

Aggression is controlled by the olfactory system in many animal species. In male mice, territorial and infant-directed aggression are tightly regulated by the vomeronasal organ (VNO), but how diverse subsets of sensory neurons convey pheromonal information to limbic centers is not yet known. Here, we employ genetic strategies to show that mouse vomeronasal sensory neurons expressing the G protein subunit Gαi2 regulate male-male and infant-directed aggression through distinct circuit mechanisms. Conditional ablation of Gαi2 enhances male-male aggression and increases neural activity in the medial amygdala (MeA), bed nucleus of the stria terminalis, and lateral septum. By contrast, conditional Gαi2 ablation causes reduced infant-directed aggression and decreased activity in MeA neurons during male-infant interactions. Strikingly, these mice also display enhanced parental behavior and elevated neural activity in the medial preoptic area, whereas sexual behavior remains normal. These results identify Gαi2 as the primary G protein α-subunit mediating the detection of volatile chemosignals in the apical layer of the VNO, and they show that Gαi2+ VSNs and the brain circuits activated by these neurons play a central role in orchestrating and balancing territorial and infant-directed aggression of male mice through bidirectional activation and inhibition of different targets in the limbic system.


Assuntos
Agressão , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Células Receptoras Sensoriais/metabolismo , Territorialidade , Órgão Vomeronasal/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Encéfalo/fisiologia , Mapeamento Encefálico , Feminino , Deleção de Genes , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética , Comportamento Sexual Animal
5.
Neuroimage ; 230: 117776, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33516895

RESUMO

Reproduction induces changes within the brain to prepare for gestation and motherhood. However, the dynamic of these central changes and their relationships with the development of maternal behavior remain poorly understood. Here, we describe a longitudinal morphometric neuroimaging study in female mice between pre-gestation and weaning, using new magnetic resonance imaging (MRI) resources comprising a high-resolution brain template, its associated tissue priors (60-µm isotropic resolution) and a corresponding mouse brain atlas (1320 regions of interest). Using these tools, we observed transient hypertrophies not only within key regions controlling gestation and maternal behavior (medial preoptic area, bed nucleus of the stria terminalis), but also in the amygdala, caudate nucleus and hippocampus. Additionally, unlike females exhibiting lower levels of maternal care, highly maternal females developed transient hypertrophies in somatosensory, entorhinal and retrosplenial cortices among other regions. Therefore, coordinated and transient brain modifications associated with maternal performance occurred during gestation and lactation.


Assuntos
Atlas como Assunto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Lactação/fisiologia , Comportamento Materno/fisiologia , Gravidez/fisiologia , Animais , Feminino , Lactação/psicologia , Estudos Longitudinais , Masculino , Comportamento Materno/psicologia , Camundongos , Gravidez/psicologia
6.
J Exp Biol ; 224(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494651

RESUMO

Mammals living at temperate latitudes typically display annual cyclicity in their reproductive activity: births are synchronized when environmental conditions are most favorable. In a majority of these species, day length is the main proximate factor used to anticipate seasonal changes and to adapt physiology. The brain integrates this photoperiodic signal through key hypothalamic structures, which regulate the reproductive axis. In this context, our study aimed to characterize regulations that occur along the hypothalamo-pituitary-gonadal (HPG) axis in male fossorial water voles (Arvicola terrestris, also known as Arvicola amphibius) throughout the year and to further probe the implication of photoperiod in these seasonal regulations. Our monthly field monitoring showed dramatic seasonal changes in the morphology and activity of reproductive organs, as well as in the androgen-dependent lateral scent glands. Moreover, our data uncovered seasonal variations at the hypothalamic level. During the breeding season, kisspeptin expression in the arcuate nucleus (ARC) decreases, while RFRP3 expression in the dorsomedial hypothalamic nucleus (DMH) increases. Our follow-up laboratory study revealed activation of the reproductive axis and confirmed a decrease in kisspeptin expression in males exposed to a long photoperiod (summer condition) compared with those maintained under a short photoperiod (winter condition) that retain all features reminiscent of sexual inhibition. Altogether, our study characterizes neuroendocrine and anatomical markers of seasonal reproductive rhythmicity in male water voles and further suggests that these seasonal changes are strongly impacted by photoperiod.


Assuntos
Arvicolinae , Fotoperíodo , Animais , Hipotálamo , Masculino , Reprodução , Estações do Ano
7.
Environ Res ; 200: 111422, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34062198

RESUMO

Anticoagulant rodenticides (AR) resistance has been defined as "a major loss of efficacy due to the presence of a strain of rodent with a heritable and commensurately reduced sensitivity to the anticoagulant". The mechanism that supports this resistance has been identified as based on mutations in the Vkorc1 gene leading to severe resistance in rats and mice. This study evaluates the validity of this definition in the fossorial water vole and explores the possibility of a non-genetic diet-based resistance in a strict herbivorous rodent species. Genetic support was explored by sequencing the Vkorc1 gene and the diet-based resistance was explored by the dosing of vitamins K in liver of voles according to seasons. From a sample of 300 voles, only 2 coding mutations, G71R and S149I, were detected in the Vkorc1 gene in the heterozygous state with low allele frequencies (0.5-1%). These mutations did not modify the sensitivity to AR, suggesting an absence of genetic Vkorc1-based resistance in the water vole. On the contrary, vitamin K1 was shown to be 5 times more abundant in the liver of the water vole compared to rats. This liver concentration was shown to seasonally vary, with a trough in late winter and a peak in late spring/early summer related to the growth profile of grass. This increase in concentration might be responsible for the increased resistance of water voles to AR. This study highlights a non-genetic, diet-related resistance mechanism in rodents to AR. This diet-based resistance might explain the different evolution of the Vkorc1 gene in the fossorial water vole compared to rats and mice.


Assuntos
Rodenticidas , Animais , Anticoagulantes , Arvicolinae/genética , Dieta , Proteínas de Membrana , Camundongos , Ratos , Rodenticidas/toxicidade , Estações do Ano , Vitamina K Epóxido Redutases/genética
8.
Gen Comp Endocrinol ; 311: 113853, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265346

RESUMO

Seasonally breeding mammals display timely physiological switches between reproductive activity and sexual rest, which ensure synchronisation of births at the most favourable time of the year. These switches correlate with seasonal changes along the hypothalamo-pituitary-gonadal axis, but they are primarily orchestrated at the hypothalamic level through environmental control of KISS1-dependent GnRH release. Our field study shows that births of fossorial water voles, Arvicola terrestris, are concentrated between March and October, which indicates the existence of an annual reproductive cycle in this species. Monthly field monitoring for over a year further reveals dramatic seasonal changes in the morphology of the ovary, uterus and lateral scent glands, which correlate with the reproductive status. Finally, we demonstrate seasonal variation in kisspeptin expression within the hypothalamic arcuate nucleus. Altogether, this study demonstrates a marked rhythm of seasonal breeding in the water vole and we speculate that this is governed by seasonal changes in photoperiod.


Assuntos
Arvicolinae , Fotoperíodo , Animais , Feminino , Hipotálamo/metabolismo , Sistemas Neurossecretores , Estações do Ano
9.
Front Neuroendocrinol ; 54: 100765, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31112731

RESUMO

During pregnancy, the sequential release of progesterone, 17ß-estradiol, prolactin, oxytocin and placental lactogens reorganize the female brain. Brain structures such as the medial preoptic area, the bed nucleus of the stria terminalis and the motivation network including the ventral tegmental area and the nucleus accumbens are reorganized by this specific hormonal schedule such that the future mother will be ready to provide appropriate care for her offspring right at parturition. Any disruption to this hormone pattern, notably by exposures to endocrine disrupting chemicals (EDC), is therefore likely to affect the maternal brain and result in maladaptive maternal behavior. Development effects of EDCs have been the focus of intense study, but relatively little is known about how the maternal brain and behavior are affected by EDCs. We encourage further research to better understand how the physiological hormone sequence prepares the mother's brain and how EDC exposure could disturb this reorganization.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Disruptores Endócrinos/farmacologia , Hormônios Esteroides Gonadais/metabolismo , Comportamento Materno/fisiologia , Gravidez/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Feminino , Comportamento Materno/efeitos dos fármacos , Camundongos , Gravidez/efeitos dos fármacos , Ratos
10.
BMC Genomics ; 20(1): 794, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666027

RESUMO

BACKGROUND: Small ungulates (sheep and goat) display a seasonal breeding, characterised by two successive periods, sexual activity (SA) and sexual rest (SR). Odours emitted by a sexually active male can reactivate the ovulatory cycle of anoestrus females. The plasticity of the olfactory system under these hormonal changes has never been explored at the peripheral level of odours reception. As it was shown in pig that the olfactory secretome (proteins secreted in the nasal mucus) could be modified under hormonal control, we monitored its composition in females of both species through several reproductive seasons, thanks to a non-invasive sampling of olfactory mucus. For this purpose, two-dimensional gel electrophoresis (2D-E), western-blot with specific antibodies, MALDI-TOF and high-resolution (nano-LC-MS/MS) mass spectrometry, RACE-PCR and molecular modelling were used. RESULTS: In both species the olfactory secretome is composed of isoforms of OBP-like proteins, generated by post-translational modifications, as phosphorylation, N-glycosylation and O-GlcNAcylation. Important changes were observed in the olfactory secretome between the sexual rest and the sexual activity periods, characterised in ewe by the specific expression of SAL-like proteins and the emergence of OBPs O-GlcNAcylation. In goat, the differences between SA and SR did not come from new proteins expression, but from different post-translational modifications, the main difference between the SA and SR secretome being the number of isoforms of each protein. Proteomics data are available via ProteomeXchange with identifier PXD014833. CONCLUSION: Despite common behaviour, seasonal breeding, and genetic resources, the two species seem to adapt their olfactory equipment in SA by different modalities: the variation of olfactory secretome in ewe could correspond to a specialization to detect male odours only in SA, whereas in goat the stability of the olfactory secretome could indicate a constant capacity of odours detection suggesting that the hallmark of SA in goat might be the emission of specific odours by the sexually active male. In both species, the olfactory secretome is a phenotype reflecting the physiological status of females, and could be used by breeders to monitor their receptivity to the male effect.


Assuntos
Proteínas de Transporte/metabolismo , Cabras/metabolismo , Mucosa Nasal/metabolismo , Estações do Ano , Ovinos/metabolismo , Acilação , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Clonagem Molecular , Simulação por Computador , Feminino , Glicosilação , Cabras/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Análise de Sequência , Ovinos/genética
11.
Horm Behav ; 106: 81-92, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30308180

RESUMO

In rodents, early exposure to adult male is well known to induce an early puberty in females (Vandenbergh effect). This phenomenon has been less studied in other mammals. In goats, despite our extensive knowledge about the "male-effect" phenomenon in adults (i.e. ovulation induced by the introduction of the male during the anestrous), there are few data on the consequences of an early exposure of females to males. Here, we evaluated the puberty onset of young alpine goats when raised since weaning with intact bucks (INT), with castrated bucks (CAS) or isolated from bucks (ISOL). The INT group had the first ovulation 1.5 month before the two other groups. Despite the earlier puberty the INT group of females had normal and regular ovarian cycles. Morphological study of the genital tract showed that at 6 months, uterus of INT goats was 40% heavier than CAS and ISOL goats. Moreover, INT females had a myometrium significantly thicker and INT was the only group having corpora lutea. In our study, INT females were pubescent in the month following the entry of bucks into the breeding season, suggesting that only sexually active bucks provide the signal responsible for puberty acceleration. By removing direct contact with the bucks, we showed that somatosensory interactions were dispensable for an early puberty induction. Finally, no difference in the GnRH network (fiber density and number of synaptic appositions) can be detected between pubescent and non-pubescent females, suggesting that the male stimulations triggering puberty onset act probably on upstream neuronal networks, potentially on kisspeptin neurons.


Assuntos
Sinais (Psicologia) , Cabras/fisiologia , Ovulação/fisiologia , Comportamento Sexual Animal/fisiologia , Maturidade Sexual/fisiologia , Comportamento Social , Anestro/fisiologia , Animais , Feminino , Hormônio Liberador de Gonadotropina/sangue , Masculino , Estações do Ano
12.
Hum Mol Genet ; 24(25): 7326-38, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26464488

RESUMO

Ovarian oestradiol is essential for pubertal maturation and adult physiology of the female reproductive axis. It acts at central and peripheral sites through two main oestrogen receptors (ER) α and ß. Here we investigate the role of ERß on central effects of oestradiol, by generating a mouse line specifically lacking the ERß gene in neuronal and glial cells. Central ERß deletion delays the age at vaginal opening and first oestrous and reduces uterine weight without affecting body growth. Analysis of factors necessary for pubertal progression shows reduced levels of Kiss1 transcripts at postnatal (P) day 25 in the preoptic area, but not in the mediobasal hypothalamus (MBH) of mutant females. In agreement with these data, the number of kisspeptin-immunoreactive neurons was decreased by 57-72% in the three subdivisions of the rostral periventricular area of the third ventricle (RP3V), whereas the density of kisspeptin-immunoreactive fibres was unchanged in the arcuate nucleus of mutant mice. These alterations do not involve changes in ERα mRNAs in the preoptic area and protein levels in the RP3V. The number and distribution of GnRH-immunoreactive cells were unaffected, but gonadotropin-releasing hormone (GnRH) transcript levels were higher in the P25 preoptic area of mutants. At adulthood, mutant females have normal oestrous cyclicity, kisspeptin system and exhibit unaltered sexual behaviour. They display, however, reduced ovary weight and increased anxiety-related behaviour during the follicular phase. This argues for the specific involvement of central ERß in the regulation of pubertal onset in female reproduction, possibly through prepubertal induction of kisspeptin expression in the RP3V.


Assuntos
Receptor beta de Estrogênio/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Animais , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Ciclo Estral/fisiologia , Feminino , Hormônio Liberador de Gonadotropina/genética , Hipotálamo/metabolismo , Kisspeptinas/genética , Camundongos , Puberdade/genética , Puberdade/metabolismo
13.
Horm Behav ; 80: 1-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26836767

RESUMO

Estradiol derived from neural aromatization of gonadal testosterone plays a key role in the perinatal organization of the neural circuitry underlying male sexual behavior. The aim of this study was to investigate the contribution of neural estrogen receptor (ER) ß in estradiol-induced effects without interfering with its peripheral functions. For this purpose, male mice lacking ERß in the nervous system were generated. Analyses of males in two consecutive tests with a time interval of two weeks showed an effect of experience, but not of genotype, on the latencies to the first mount, intromission, pelvic thrusting and ejaculation. Similarly, there was an effect of experience, but not of genotype, on the number of thrusts and mating length. Neural ERß deletion had no effect on the ability of males to adopt a lordosis posture in response to male mounts, after castration and priming with estradiol and progesterone. Indeed, only low percentages of both genotypes exhibited a low lordosis quotient. It also did not affect their olfactory preference. Quantification of tyrosine hydroxylase- and kisspeptin-immunoreactive neurons in the preoptic area showed unaffected sexual dimorphism of both populations in mutants. By contrast, the number of androgen receptor- and ERα-immunoreactive cells was significantly increased in the bed nucleus of stria terminalis of mutant males. These data show that neural ERß does not play a crucial role in the organization and activation of the neural circuitry underlying male sexual behavior. These discrepancies with the phenotype of global ERß knockout models are discussed.


Assuntos
Receptor beta de Estrogênio/genética , Camundongos , Mutagênese/genética , Gravidez , Comportamento Sexual Animal/fisiologia , Animais , Deleção Cromossômica , Feminino , Fertilidade/genética , Hipotálamo Anterior/metabolismo , Masculino , Camundongos Knockout , Neuroglia/metabolismo , Neurônios/metabolismo , Área Pré-Óptica/fisiologia , Núcleos Septais/metabolismo
15.
BMC Biol ; 12: 31, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24886577

RESUMO

BACKGROUND: Optimal reproductive fitness is essential for the biological success and survival of species. The vomeronasal organ is strongly implicated in the display of sexual and reproductive behaviors in female mice, yet the roles that apical and basal vomeronasal neuron populations play in controlling these gender-specific behaviors remain largely unclear. RESULTS: To dissect the neural pathways underlying these functions, we genetically inactivated the basal vomeronasal organ layer using conditional, cell-specific ablation of the G protein Gαo. Female mice mutant for Gαo show severe alterations in sexual and reproductive behaviors, timing of puberty onset, and estrous cycle. These mutant mice are insensitive to reproductive facilitation stimulated by male pheromones that accelerate puberty and induce ovulation. Gαo-mutant females exhibit a striking reduction in sexual receptivity or lordosis behavior to males, but gender discrimination seems to be intact. These mice also show a loss in male scent preference, which requires a learned association for volatile olfactory signals with other nonvolatile ownership signals that are contained in the high molecular weight fraction of male urine. Thus, Gαo impacts on both instinctive and learned social responses to pheromones. CONCLUSIONS: These results highlight that sensory neurons of the Gαo-expressing vomeronasal subsystem, together with the receptors they express and the molecular cues they detect, control a wide range of fundamental mating and reproductive behaviors in female mice.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Feromônios/farmacologia , Reprodução/efeitos dos fármacos , Comportamento Sexual Animal/efeitos dos fármacos , Animais , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Comportamento de Escolha/efeitos dos fármacos , Ciclo Estral/efeitos dos fármacos , Feminino , Deleção de Genes , Genes Reporter , Hormônios Esteroides Gonadais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovário/patologia , Postura , Maturidade Sexual/efeitos dos fármacos , Olfato/efeitos dos fármacos
16.
Biochem Soc Trans ; 42(4): 878-81, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25109972

RESUMO

In female mice, exposure to male chemosignals results in early puberty onset characterized by advanced vaginal opening and higher uterine weight. Evidence suggests that the male chemosignals responsible for acceleration of female puberty are androgen-dependent, but not all of the compounds that contribute to puberty acceleration have been identified. The male chemosignals are primarily detected and processed by the vomeronasal system including the vomeronasal organ, the accessory olfactory bulb and the medial amygdala. By contrast, the mechanism by which this olfactory information is integrated in the hypothalamus is poorly understood. In this context, the recent identification of the neuropeptide kisspeptin as a gatekeeper of puberty onset may provide a good candidate neuropeptide system for the transmission of chemosensory information to the gonadotrope axis.


Assuntos
Vias Neurais/fisiologia , Maturidade Sexual/fisiologia , Animais , Complexo Nuclear Corticomedial/metabolismo , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Odorantes , Bulbo Olfatório/metabolismo , Percepção Olfatória/genética , Percepção Olfatória/fisiologia , Puberdade/genética , Puberdade/metabolismo , Órgão Vomeronasal/metabolismo
17.
Horm Behav ; 65(2): 128-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24361197

RESUMO

Testosterone-dependent olfactory signals emitted by male are well known to accelerate female puberty in mice (Vandenbergh effect). However, it remains unclear whether these chemosignals also influence adult expression of male-directed odor preference. Therefore, we exposed female mice to intact or castrated male bedding (vs clean bedding as control) during the peripubertal period (postnatal day (PD) 21-38) and measured male-directed odor preference in adulthood. At PD45 or PD60, females exposed to intact male odors, and thus showing puberty acceleration, preferred to investigate odors from intact males over females or castrated males. Females exposed to castrated male odors did not show puberty acceleration but preferred male (intact or castrated) over female odors. Finally, control females did not show any odor preference when tested at PD45, although a preference for male odors emerged later (PD60). In a second experiment, females that were exposed to intact male odors after pubertal transition (PD36-53) also preferred intact male over castrated male odors. In conclusion, our results indicate that peripubertal exposure to male odors induced early expression of male-directed odor preference regardless of puberty-accelerating effect and that induction of male-directed odor preference is not specific to the peripubertal period.


Assuntos
Comportamento de Escolha/fisiologia , Odorantes , Comportamento Sexual Animal/fisiologia , Maturidade Sexual/fisiologia , Olfato/fisiologia , Animais , Feminino , Masculino , Camundongos
18.
Physiol Behav ; 275: 114451, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176291

RESUMO

Early exposure of does to sexually active bucks triggers early puberty onset correlating with neuroendocrine changes. However, the sensory pathways that are stimulated by the male are still unknown. Here, we assessed whether responses to olfactory stimuli are modulated by social experience (exposure to males or not) and/or endocrine status (prepubescent or pubescent). We used a calcium imaging approach on goat sensory cells from the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). For both cell types, we observed robust responses to active male hair in females under three physiological conditions: prepubescent females isolated from males (ISOL PrePub), pubescent females exposed to males (INT Pub) and isolated females (ISOL Pub). Response analysis showed overall greater proportion of responses to buck hair in ISOL PrePub. We hypothesized that females would be more responsive to active buck hair during the prepubertal period, with numerous responses perhaps originating from immature neurons. We also observed a greater proportion of mature olfactory neurons in the MOE and VNO of INT Pub females suggesting that male exposure can induce plastic changes on olfactory cell function and organization. To determine whether stimulation by male odor can advance puberty, we exposed prepubescent does to active buck hair (ODOR). In both ODOR and females isolated from males (ISOL) groups, puberty was reached one month after females exposed to intact bucks (INT), suggesting that olfactory stimulation is not sufficient to trigger puberty.


Assuntos
Ovulação , Comportamento Sexual Animal , Animais , Feminino , Masculino , Comportamento Sexual Animal/fisiologia , Estações do Ano , Ovulação/fisiologia , Olfato , Cabras/fisiologia
19.
Gen Comp Endocrinol ; 188: 3-8, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23523710

RESUMO

Pheromones are known to trigger either short-term behavioral responses, usually referred to as "releaser effects", or more long-term physiological changes, known as "primer effects", which especially affect reproductive function at the level of the gonadotrope axis. The precise mechanisms through which pheromones interact with the gonadotrope axis in the hypothalamus is not fully known. We propose that the neuropeptide Kisspeptin, could be a specific target of primer pheromones, allowing these pheromones to modulate the gonadotrope axis and GnRH activity. This emerging hypothesis is discussed in the context of puberty acceleration in female mice and the male effect in female ungulates (sheep or goat). These examples have been chosen to illustrate the diversity of the reproductive contexts in mammals and potential mechanisms affected by primer effects at the level of the gonadotrope axis.


Assuntos
Kisspeptinas/metabolismo , Mamíferos/metabolismo , Mamíferos/fisiologia , Feromônios/metabolismo , Animais , Feminino , Hipotálamo/metabolismo , Masculino , Nervo Olfatório/metabolismo , Nervo Olfatório/fisiologia
20.
Sci Rep ; 13(1): 3285, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841856

RESUMO

Animals are widely believed to sense human emotions through smell. Chemoreception is the most primitive and ubiquitous sense, and brain regions responsible for processing smells are among the oldest structures in mammalian evolution. Thus, chemosignals might be involved in interspecies communication. The communication of emotions is essential for social interactions, but very few studies have clearly shown that animals can sense human emotions through smell. We used a habituation-discrimination protocol to test whether horses can discriminate between human odors produced while feeling fear vs. joy. Horses were presented with sweat odors of humans who reported feeling fear or joy while watching a horror movie or a comedy, respectively. A first odor was presented twice in successive trials (habituation), and then, the same odor and a novel odor were presented simultaneously (discrimination). The two odors were from the same human in the fear or joy condition; the experimenter and the observer were blinded to the condition. Horses sniffed the novel odor longer than the repeated odor, indicating they discriminated between human odors produced in fear and joy contexts. Moreover, differences in habituation speed and asymmetric nostril use according to odor suggest differences in the emotional processing of the two odors.


Assuntos
Habituação Psicofisiológica , Odorantes , Humanos , Cavalos , Animais , Odor Corporal , Medo , Olfato , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA