Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Physiol ; 587(1): 195-210, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19001049

RESUMO

T1R taste receptors are present throughout the gastrointestinal tract. Glucose absorption comprises active absorption via SGLT1 and facilitated absorption via GLUT2 in the apical membrane. Trafficking of apical GLUT2 is rapidly up-regulated by glucose and artificial sweeteners, which act through T1R2 + T1R3/alpha-gustducin to activate PLC beta2 and PKC betaII. We therefore investigated whether non-sugar nutrients are regulated by taste receptors using perfused rat jejunum in vivo. Under different conditions, we observed a Ca(2+)-dependent reciprocal relationship between the H(+)/oligopeptide transporter PepT1 and apical GLUT2, reflecting the fact that trafficking of PepT1 and GLUT2 to the apical membrane is inhibited and activated by PKC betaII, respectively. Addition of L-glutamate or sucralose to a perfusate containing low glucose (20 mM) each activated PKC betaII and decreased apical PepT1 levels and absorption of the hydrolysis-resistant dipeptide L-Phe(PsiS)-L-Ala (1 mM), while increasing apical GLUT2 and glucose absorption within minutes. Switching perfusion from mannitol to glucose (75 mM) exerted similar effects. c-glutamate induced rapid GPCR internalization of T1R1, T1R3 and transducin, whereas sucralose internalized T1R2, T1R3 and alpha-gustducin. We conclude that L-glutamate acts via amino acid and glucose via sweet taste receptors to coordinate regulation of PepT1 and apical GLUT2 reciprocally through a common enterocytic pool of PKC betaII. These data suggest the existence of a wider Ca(2+) and taste receptor-coordinated transport network incorporating other nutrients and/or other stimuli capable of activating PKC betaII and additional transporters, such as the aspartate/glutamate transporter, EAAC1, whose level was doubled by L-glutamate. The network may control energy supply.


Assuntos
Cálcio/metabolismo , Absorção Intestinal/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Transporte Biológico Ativo , Metabolismo Energético , Enterócitos/efeitos dos fármacos , Enterócitos/fisiologia , Transportador 3 de Aminoácido Excitatório/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Ácido Glutâmico/farmacologia , Técnicas In Vitro , Absorção Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Jejuno/fisiologia , Masculino , Modelos Biológicos , Transportador 1 de Peptídeos , Perfusão , Proteína Quinase C/metabolismo , Proteína Quinase C beta , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Simportadores/metabolismo
2.
Diabetes ; 54(10): 3056-62, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16186415

RESUMO

Understanding the mechanisms that determine postprandial fluctuations in blood glucose concentration is central for effective glycemic control in the management of diabetes. Intestinal sugar absorption is one such mechanism, and studies on its increase in experimental diabetes led us to propose a new model of sugar absorption. In the apical GLUT2 model, the glucose transported by the Na(+)/glucose cotransporter SGLT1 promotes insertion of GLUT2 into the apical membrane within minutes, so that the mechanism operates during assimilation of a meal containing high-glycemic index carbohydrate to provide a facilitated component of absorption up to three times greater than by SGLT1. Here we review the evidence for the apical GLUT2 model and describe how apical GLUT2 is a target for multiple short-term nutrient-sensing mechanisms by dietary sugars, local and endocrine hormones, cellular energy status, stress, and diabetes. These mechanisms suggest that apical GLUT2 is a potential therapeutic target for novel dietary or pharmacological approaches to control intestinal sugar delivery and thereby improve glycemic control.


Assuntos
Metabolismo dos Carboidratos , Absorção Intestinal , Animais , Membrana Celular/metabolismo , Diabetes Mellitus , Dieta , Carboidratos da Dieta/farmacocinética , Metabolismo Energético , Índice Glicêmico , Homeostase , Humanos , Transportador 1 de Glucose-Sódio/fisiologia , Estresse Fisiológico
3.
Chem Commun (Camb) ; (3): 323-5, 2006 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-16391748

RESUMO

A quantitative method has been developed for determining the affinity of substrates for the peptide transporter PepT1, allowing oral availability of drugs via PepT1 to be estimated.


Assuntos
Algoritmos , Peptídeos/química , Simportadores/química , Sítios de Ligação , Transporte Biológico , Estrutura Molecular , Transportador 1 de Peptídeos , Peptídeos/metabolismo , Especificidade por Substrato , Simportadores/metabolismo
4.
Chem Commun (Camb) ; (42): 5352-4, 2005 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-16244752

RESUMO

The conformation at the first residue of dipeptide substrates for the peptide transporter PepT1 has been probed using constrained peptide analogues, and the active conformation has been identified.


Assuntos
Dipeptídeos/química , Simportadores/química , Modelos Moleculares , Transportador 1 de Peptídeos , Conformação Proteica , Especificidade por Substrato
5.
J Histochem Cytochem ; 51(11): 1567-74, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14566028

RESUMO

We have proposed a new model of intestinal sugar absorption in which high sugar concentrations promote rapid insertion of the facilitative transporter GLUT2 into the brush-border membrane so that absorptive capacity is precisely regulated to match dietary intake during the assimilation of a meal. However, location of GLUT2 at the brush border by immunocytochemistry has been problematical. We report that control of rapid GLUT2 trafficking and the use of an antibody to a sequence within the large extracellular loop of GLUT2 permits localization of GLUT2 at the brush border. To reveal brush-border GLUT2 fully, it is necessary to digest the sugar chain at the glycosylation site close to the antigenic site. In this way, we have demonstrated by immunocytochemistry PKC-dependent changes in the regulation of brush-border GLUT2 in rat jejunum that correspond to those seen by Western blotting. The functional and immunocytochemical data are now reconciled.


Assuntos
Jejuno/metabolismo , Proteínas de Transporte de Monossacarídeos/biossíntese , Alcaloides , Animais , Benzofenantridinas , Transporte Biológico , Ativadores de Enzimas/farmacologia , Frutose/metabolismo , Transportador de Glucose Tipo 2 , Imuno-Histoquímica , Masculino , Microvilosidades/metabolismo , Fenantridinas/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Acetato de Tetradecanoilforbol/farmacologia
6.
Nutr Rev ; 69(7): 347-70, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21729089

RESUMO

Transcellular models of dietary Ca(2+) absorption by the intestine assign essential roles to TRPV6 and calbindin-D(9K) . However, studies with gene-knockout mice challenge this view. Something fundamental is missing. The L-type channel Ca(v) 1.3 is located in the apical membrane from the duodenum to the ileum. In perfused rat jejunum in vivo and in Caco-2 cells, Ca(v) 1.3 mediates sodium glucose transporter 1 (SGLT1)-dependent and prolactin-induced active, transcellular Ca(2+) absorption, respectively. TRPV6 is activated by hyperpolarization and is vitamin D dependent; in contrast, Ca(v) 1.3 is activated by depolarization and is independent of calbindin-D(9K) and vitamin D. This review considers evidence supporting the idea that Ca(v) 1.3 and TRPV6 have complementary roles in the regulation of intestinal Ca(2+) absorption as depolarization and repolarization of the apical membrane occur during and between digestive periods, respectively, and as chyme moves from one intestinal segment to another and food transit times increase. Reassessment of current arguments for paracellular flow reveals that key phenomena have alternative explanations within the integrated Ca(v) 1.3/TRPV6 view of transcellular Ca(2+) absorption.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio/metabolismo , Cálcio da Dieta/metabolismo , Absorção Intestinal , Canais de Cátion TRPV/metabolismo , Animais , Humanos
7.
Annu Rev Nutr ; 28: 35-54, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18393659

RESUMO

Intestinal glucose absorption comprises two components. One is classical active absorption mediated by the Na+/glucose cotransporter. The other is a diffusive component, formerly attributed to paracellular flow. Recent evidence, however, indicates that the diffusive component is mediated by the transient insertion of glucose transporter type 2 (GLUT2) into the apical membrane. This apical GLUT2 pathway of intestinal sugar absorption is present in species from insect to human, providing a major route at high sugar concentrations. The pathway is regulated by rapid trafficking of GLUT2 to the apical membrane induced by glucose during assimilation of a meal. Apical GLUT2 is therefore a target for multiple short-term and long-term nutrient-sensing mechanisms. These include regulation by a newly recognized pathway of calcium absorption through the nonclassical neuroendocrine l-type channel Cav1.3 operating during digestion, activation of intestinal sweet taste receptors by natural sugars and artificial sweeteners, paracrine and endocrine hormones, especially insulin and GLP-2, and stress. Permanent apical GLUT2, resulting in increased sugar absorption, is a characteristic of experimental diabetes and of insulin-resistant states induced by fructose and fat. The nutritional consequences of apical and basolateral GLUT2 regulation are discussed in the context of Western diet, processed foods containing artificial sweeteners, obesity, and diabetes.


Assuntos
Membrana Celular/metabolismo , Metabolismo Energético/fisiologia , Transportador de Glucose Tipo 2/fisiologia , Glucose/metabolismo , Absorção Intestinal/fisiologia , Cálcio/metabolismo , Metabolismo dos Carboidratos , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Humanos , Apoio Nutricional
9.
J Physiol ; 582(Pt 1): 379-92, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17495045

RESUMO

Natural sugars and artificial sweeteners are sensed by receptors in taste buds. T2R bitter and T1R sweet taste receptors are coupled through G-proteins, alpha-gustducin and transducin, to activate phospholipase C beta2 and increase intracellular calcium concentration. Intestinal brush cells or solitary chemosensory cells (SCCs) have a structure similar to lingual taste cells and strongly express alpha-gustducin. It has therefore been suggested over the last decade that brush cells may participate in sugar sensing by a mechanism analogous to that in taste buds. We provide here functional evidence for an intestinal sensing system based on lingual taste receptors. Western blotting and immunocytochemistry revealed that all T1R members are expressed in rat jejunum at strategic locations including Paneth cells, SCCs or the apical membrane of enterocytes; T1Rs are colocalized with each other and with alpha-gustducin, transducin or phospholipase C beta2 to different extents. Intestinal glucose absorption consists of two components: one is classical active Na+-glucose cotransport, the other is the diffusive apical GLUT2 pathway. Artificial sweeteners increase glucose absorption in the order acesulfame potassium approximately sucralose > saccharin, in parallel with their ability to increase intracellular calcium concentration. Stimulation occurs within minutes by an increase in apical GLUT2, which correlates with reciprocal regulation of T1R2, T1R3 and alpha-gustducin versus T1R1, transducin and phospholipase C beta2. Our observation that artificial sweeteners are nutritionally active, because they can signal to a functional taste reception system to increase sugar absorption during a meal, has wide implications for nutrient sensing and nutrition in the treatment of obesity and diabetes.


Assuntos
Transportador de Glucose Tipo 2/agonistas , Glucose/metabolismo , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Edulcorantes/farmacologia , Animais , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Isoenzimas/metabolismo , Jejuno/citologia , Jejuno/metabolismo , Masculino , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Celulas de Paneth/efeitos dos fármacos , Celulas de Paneth/metabolismo , Perfusão , Fosfolipase C beta , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Sacarina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sacarose/análogos & derivados , Sacarose/farmacologia , Tiazinas/farmacologia , Fatores de Tempo , Transducina/metabolismo , Fosfolipases Tipo C/metabolismo
10.
J Physiol ; 580(Pt. 2): 605-16, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17272349

RESUMO

Glucose absorption in rat jejunum involves Ca(2+)- and PKC betaII-dependent insertion of GLUT2 into the apical membrane. Ca(2+)-induced rearrangement of the enterocyte cytoskeleton is thought to enhance paracellular flow. We have therefore investigated the relationships between myosin II regulatory light chain phosphorylation (RLC(20)), absorption of glucose, water and calcium, and mannitol clearance. ML-7, an inhibitor of myosin light chain kinase, diminished the phloretin-sensitive apical GLUT2 but not the phloretin-insensitive SGLT1 component of glucose absorption in rat jejunum perfused with 75 mM glucose. Western blotting and immunocytochemistry revealed marked decreases in RLC(20) phosphorylation in the terminal web and in the levels of apical GLUT2 and PKC betaII, but not SGLT1. Perfusion with phloridzin or 75 mM mannitol, removal of luminal Ca(2+), or inhibition of unidirectional (45)Ca(2+) absorption by nifedipine exerted similar effects. ML-7 had no effect on the absorption of 10 mM Ca(2+), nor clearance of [(14)C]-mannitol, which was less than 0.7% of the rate of glucose absorption. Water absorption did not correlate with (45)Ca(2+) absorption or mannitol clearance. We conclude that the Ca(2+) necessary for contraction of myosin II in the terminal web enters via an L-type channel, most likely Ca(v)1.3, and is dependent on SGLT1. Moreover, terminal web RLC(20) phosphorylation is necessary for apical GLUT2 insertion. The data confirm that glucose absorption by paracellular flow is negligible, and show further that paracellular flow makes no more than a minimal contribution to jejunal Ca(2+) absorption at luminal concentrations prevailing after a meal.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Jejuno/metabolismo , Miosina Tipo II/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Animais , Azepinas/farmacologia , Radioisótopos de Cálcio , Radioisótopos de Carbono , Citoesqueleto/metabolismo , Enterócitos/metabolismo , Glucose/metabolismo , Técnicas In Vitro , Manitol/metabolismo , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Naftalenos/farmacologia , Permeabilidade , Fosforilação , Ratos , Transportador 1 de Glucose-Sódio/metabolismo , Canais de Cátion TRPV/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA