Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Cell ; 165(1): 35-44, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26997480

RESUMO

PD-1 immune checkpoint blockade provides significant clinical benefits for melanoma patients. We analyzed the somatic mutanomes and transcriptomes of pretreatment melanoma biopsies to identify factors that may influence innate sensitivity or resistance to anti-PD-1 therapy. We find that overall high mutational loads associate with improved survival, and tumors from responding patients are enriched for mutations in the DNA repair gene BRCA2. Innately resistant tumors display a transcriptional signature (referred to as the IPRES, or innate anti-PD-1 resistance), indicating concurrent up-expression of genes involved in the regulation of mesenchymal transition, cell adhesion, extracellular matrix remodeling, angiogenesis, and wound healing. Notably, mitogen-activated protein kinase (MAPK)-targeted therapy (MAPK inhibitor) induces similar signatures in melanoma, suggesting that a non-genomic form of MAPK inhibitor resistance mediates cross-resistance to anti-PD-1 therapy. Validation of the IPRES in other independent tumor cohorts defines a transcriptomic subset across distinct types of advanced cancer. These findings suggest that attenuating the biological processes that underlie IPRES may improve anti-PD-1 response in melanoma and other cancer types.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Melanoma/tratamento farmacológico , Metástase Neoplásica/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos/efeitos adversos , Proteína BRCA2/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/genética , Metástase Neoplásica/genética , Nivolumabe , Transcriptoma
3.
Breast Cancer Res Treat ; 204(1): 117-121, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087058

RESUMO

PURPOSE: Unnecessary axillary surgery can potentially be avoided in patients with DCIS undergoing mastectomy. Current guidelines recommend upfront sentinel lymph node biopsy during the index operation due to the potential of upstaging to invasive cancer. This study reviews a single institution's experience with de-escalating axillary surgery using superparamagnetic iron oxide dye for axillary mapping in patients undergoing mastectomy for DCIS. METHODS: This is a retrospective single-institution cross-sectional study. All medical records of patients who underwent mastectomy for a diagnosis of DCIS from August 2021 to January 2023 were reviewed and patients who had SPIO injected at the time of the index mastectomy were included in the study. Descriptive statistics of demographics, clinical information, pathology results, and interval sentinel lymph node biopsy were performed. RESULTS: A total of 41 participants underwent 45 mastectomies for DCIS. The median age of the participants was 58 years (IQR = 17; range 25 to 76 years), and the majority of participants were female (97.8%). The most common indication for mastectomy was diffuse extent of disease (31.7%). On final pathology, 75.6% (34/45) of mastectomy specimens had DCIS without any type of invasion and 15.6% (7/45) had invasive cancer. Of the 7 cases with upgrade to invasive disease, 2 (28.6%) of them underwent interval sentinel lymph node biopsy. All sentinel lymph nodes biopsied were negative for cancer. CONCLUSION: The use of superparamagnetic iron oxide dye can prevent unnecessary axillary surgery in patients with DCIS undergoing mastectomy.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Compostos Férricos , Humanos , Feminino , Masculino , Adolescente , Mastectomia , Carcinoma Intraductal não Infiltrante/diagnóstico , Carcinoma Intraductal não Infiltrante/cirurgia , Carcinoma Intraductal não Infiltrante/patologia , Estudos Retrospectivos , Estudos Transversais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Biópsia de Linfonodo Sentinela/métodos , Axila/cirurgia , Axila/patologia , Nanopartículas Magnéticas de Óxido de Ferro , Linfonodos/patologia
4.
Pharmacol Res ; 201: 107092, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311014

RESUMO

AP endonuclease-1/Redox factor-1 (APE1/Ref-1 or Ref-1) is a multifunctional protein that is overexpressed in most aggressive cancers and impacts various cancer cell signaling pathways. Ref-1's redox activity plays a significant role in activating transcription factors (TFs) such as NFκB, HIF1α, STAT3 and AP-1, which are crucial contributors to the development of tumors and metastatic growth. Therefore, development of potent, selective inhibitors to target Ref-1 redox function is an appealing approach for therapeutic intervention. A first-generation compound, APX3330 successfully completed phase I clinical trial in adults with progressing solid tumors with favorable response rate, pharmacokinetics (PK), and minimal toxicity. These positive results prompted us to develop more potent analogs of APX3330 to effectively target Ref-1 in solid tumors. In this study, we present structure-activity relationship (SAR) identification and validation of lead compounds that exhibit a greater potency and a similar or better safety profile to APX3330. In order to triage and characterize the most potent and on-target second-generation Ref-1 redox inhibitors, we assayed for PK, mouse and human S9 fraction metabolic stability, in silico ADMET properties, ligand-based WaterLOGSY NMR measurements, pharmacodynamic markers, cell viability in multiple cancer cell types, and two distinct 3-dimensional (3D) cell killing assays (Tumor-Microenvironment on a Chip and 3D spheroid). To characterize the effects of Ref-1 inhibition in vivo, global proteomics was used following treatment with the top four analogs. This study identified and characterized more potent inhibitors of Ref-1 redox function (that outperformed APX3330 by 5-10-fold) with PK studies demonstrating efficacious doses for translation to clinic.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Neoplasias , Adulto , Humanos , Animais , Camundongos , Inibidores da Angiogênese , Apoptose , Bioensaio , Neoplasias/tratamento farmacológico , Microambiente Tumoral
5.
J Pharmacol Exp Ther ; 386(1): 15-25, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142441

RESUMO

Neovascular eye diseases include conditions such as retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular age-related macular degeneration. Together, they are a major cause of vision loss and blindness worldwide. The current therapeutic mainstay for these diseases is intravitreal injections of biologics targeting vascular endothelial growth factor (VEGF) signaling. Lack of universal response to these anti-VEGF agents coupled with the challenging delivery method underscore a need for new therapeutic targets and agents. In particular, proteins that mediate both inflammatory and proangiogenic signaling are appealing targets for new therapeutic development. Here, we review agents currently in clinical trials and highlight some promising targets in preclinical and early clinical development, focusing on the redox-regulatory transcriptional activator APE1/Ref-1, the bioactive lipid modulator soluble epoxide hydrolase, the transcription factor RUNX1, and others. Small molecules targeting each of these proteins show promise for blocking neovascularization and inflammation. The affected signaling pathways illustrate the potential of new antiangiogenic strategies for posterior ocular disease. SIGNIFICANCE STATEMENT: Discovery and therapeutic targeting of new angiogenesis mediators is necessary to improve treatment of blinding eye diseases like retinopathy of prematurity, diabetic retinopathy, and neovascular age-related macular degeneration. Novel targets undergoing evaluation and drug discovery work include proteins important for both angiogenesis and inflammation signaling, including APE1/Ref-1, soluble epoxide hydrolase, RUNX1, and others.


Assuntos
Retinopatia Diabética , Degeneração Macular , Retinopatia da Prematuridade , Humanos , Recém-Nascido , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Subunidade alfa 2 de Fator de Ligação ao Core , Retinopatia Diabética/tratamento farmacológico , Epóxido Hidrolases , Inflamação/tratamento farmacológico , Degeneração Macular/tratamento farmacológico , Retinopatia da Prematuridade/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
6.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674619

RESUMO

APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1, APE1 or APEX1; redox factor-1, Ref-1) is a dual-functional enzyme with crucial roles in DNA repair, reduction/oxidation (redox) signaling, and RNA processing and metabolism. The redox function of Ref-1 regulates several transcription factors, such as NF-κB, STAT3, HIF-1α, and others, which have been implicated in multiple human diseases, including ocular angiogenesis, inflammation, and multiple cancers. To better understand how APE1 influences these disease processes, we investigated the effects of APEX1 knockdown (KD) on gene expression in human retinal endothelial cells. This abolishes both DNA repair and redox signaling functions, as well as RNA interactions. Using RNA-seq analysis, we identified the crucial signaling pathways affected following APEX1 KD, with subsequent validation by qRT-PCR. Gene expression data revealed that multiple genes involved in DNA base excision repair, other DNA repair pathways, purine or pyrimidine metabolism signaling, and histidine/one carbon metabolism pathways were downregulated by APEX1 KD. This is in contrast with the alteration of pathways by APEX1 KD in human cancer lines, such as pancreatic ductal adenocarcinoma, lung, HeLa, and malignant peripheral nerve sheath tumors. These results highlight the unique role of APE1/Ref-1 and the clinical therapeutic potential of targeting APE1 and pathways regulated by APE1 in the eye. These findings provide novel avenues for ocular neovascularization treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Células Endoteliais/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Neoplasias Pancreáticas/patologia , Reparo do DNA , Fatores de Transcrição/metabolismo , Carcinoma Ductal Pancreático/genética , Oxirredução
7.
Adv Exp Med Biol ; 1383: 221-228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587161

RESUMO

Enteric neuropathy underlies long-term gastrointestinal (GI) dysfunction associated with several pathological conditions. Our previous studies have demonstrated that structural and functional changes in the enteric nervous system (ENS) result in persistent alterations of intestinal functions long after the acute insult. These changes lead to aberrant immune response and chronic dysregulation of the epithelial barrier. Damage to the ENS is prognostic of disease progression and plays an important role in the recurrence of clinical manifestations. This suggests that the ENS is a viable therapeutic target to alleviate chronic intestinal dysfunction. Our recent studies in preclinical animal models have progressed into the development of novel therapeutic strategies for the treatment of enteric neuropathy in various chronic GI disorders. We have tested the anti-inflammatory and neuroprotective efficacy of novel compounds targeting specific molecular pathways. Ex vivo studies in human tissues freshly collected after resection surgeries provide an understanding of the molecular mechanisms involved in enteric neuropathy. In vivo treatments in animal models provide data on the efficacy and the mechanisms of actions of the novel compounds and their combinations with clinically used therapies. These novel findings provide avenues for the development of safe, cost-effective, and highly efficacious treatments of GI disorders.


Assuntos
Sistema Nervoso Entérico , Gastroenteropatias , Pseudo-Obstrução Intestinal , Animais , Humanos , Sistema Nervoso Entérico/patologia , Gastroenteropatias/tratamento farmacológico , Pseudo-Obstrução Intestinal/patologia , Resultado do Tratamento , Modelos Animais
8.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163831

RESUMO

Cisplatin can induce peripheral neuropathy, which is a common complication of anti-cancer treatment and negatively impacts cancer survivors during and after completion of treatment; therefore, the mechanisms by which cisplatin alters sensory neuronal function to elicit neuropathy are the subject of much investigation. Our previous work suggests that the DNA repair activity of APE1/Ref-1, the rate-limiting enzyme of the base excision repair (BER) pathway, is critical for neuroprotection against cisplatin. A specific role for 8-oxoguanine DNA glycosylase-1 (OGG1), the glycosylase that removes the most common oxidative DNA lesion, and putative coordination of OGG1 with APE1/Ref-1 in sensory neurons, has not been investigated. We investigated whether inhibiting OGG1 glycosylase activity with the small molecule inhibitor, TH5487, and/or APE1/Ref-1 endonuclease activity with APE Repair Inhibitor III would alter the neurotoxic effects of cisplatin in sensory neuronal cultures. Sensory neuron function was assessed by calcitonin gene-related peptide (CGRP) release, as a marker of sensitivity and by neurite outgrowth. Cisplatin altered neuropeptide release in an inverse U-shaped fashion, with low concentrations enhancing and higher concentrations diminishing CGRP release. Pretreatment with BER inhibitors exacerbated the functional effects of cisplatin and enhanced 8oxo-dG and adduct lesions in the presence of cisplatin. Our studies demonstrate that inhibition of OGG1 and APE1 endonuclease activity enhances oxidative DNA damage and exacerbates neurotoxicity, thus limiting oxidative DNA damage in sensory neurons that might alleviate cisplatin-induced neuropathy.


Assuntos
Benzimidazóis/farmacologia , Cisplatino/toxicidade , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Piperidinas/farmacologia , Células Receptoras Sensoriais/metabolismo , Ubiquitina-Proteína Ligases/farmacologia , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Células Cultivadas , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Estresse Oxidativo , Cultura Primária de Células , Ratos , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/efeitos dos fármacos
9.
J Cell Mol Med ; 25(2): 784-800, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33274592

RESUMO

With a plethora of molecularly targeted agents under investigation in cancer, a clear need exists to understand which pathways can be targeted simultaneously with multiple agents to elicit a maximal killing effect on the tumour. Combination therapy provides the most promise in difficult to treat cancers such as pancreatic. Ref-1 is a multifunctional protein with a role in redox signalling that activates transcription factors such as NF-κB, AP-1, HIF-1α and STAT3. Formerly, we have demonstrated that dual targeting of Ref-1 (redox factor-1) and STAT3 is synergistic and decreases cell viability in pancreatic cancer cells. Data presented here extensively expands upon this work and provides further insights into the relationship of STAT3 and Ref-1 in multiple cancer types. Using targeted small molecule inhibitors, Ref-1 redox signalling was blocked along with STAT3 activation, and tumour growth evaluated in the presence and absence of the relevant tumour microenvironment. Our study utilized qPCR, cytotoxicity and in vivo analysis of tumour and cancer-associated fibroblasts (CAF) response to determine the synergy of Ref-1 and STAT3 inhibitors. Overall, pancreatic tumours grown in the presence of CAFs were sensitized to the combination of STAT3 and Ref-1 inhibition in vivo. In vitro bladder and pancreatic cancer demonstrated the most synergistic responses. By disabling both of these important pathways, this combination therapy has the capacity to hinder crosstalk between the tumour and its microenvironment, leading to improved tumour response.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fator de Transcrição STAT3/metabolismo , Animais , Benzofuranos/farmacologia , Western Blotting , Linhagem Celular Tumoral , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Células HCT116 , Humanos , Imuno-Histoquímica , Camundongos , Naftoquinonas/farmacologia , Nitrilas , Neoplasias Pancreáticas/genética , Pirazóis/farmacologia , Pirimidinas , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/genética , Microambiente Tumoral/efeitos dos fármacos
10.
Br J Cancer ; 124(9): 1566-1580, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33658640

RESUMO

BACKGROUND: MPNST is a rare soft-tissue sarcoma that can arise from patients with NF1. Existing chemotherapeutic and targeted agents have been unsuccessful in MPNST treatment, and recent findings implicate STAT3 and HIF1-α in driving MPNST. The DNA-binding and transcriptional activity of both STAT3 and HIF1-α is regulated by Redox factor-1 (Ref-1) redox function. A first-generation Ref-1 inhibitor, APX3330, is being tested in cancer clinical trials and could be applied to MPNST. METHODS: We characterised Ref-1 and p-STAT3 expression in various MPNST models. Tumour growth, as well as biomarkers of apoptosis and signalling pathways, were measured by qPCR and western blot following treatment with inhibitors of Ref-1 or STAT3. RESULTS: MPNSTs from Nf1-Arfflox/floxPostnCre mice exhibit significantly increased positivity of p-STAT3 and Ref-1 expression when malignant transformation occurs. Inhibition of Ref-1 or STAT3 impairs MPNST growth in vitro and in vivo and induces apoptosis. Genes highly expressed in MPNST patients are downregulated following inhibition of Ref-1 or STAT3. Several biomarkers downstream of Ref-1 or STAT3 were also downregulated following Ref-1 or STAT3 inhibition. CONCLUSIONS: Our findings implicate a unique therapeutic approach to target important MPNST signalling nodes in sarcomas using new first-in-class small molecules for potential translation to the clinic.


Assuntos
Biomarcadores Tumorais/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Regulação Neoplásica da Expressão Gênica , Neurofibrossarcoma/patologia , Fator de Transcrição STAT3/metabolismo , Adolescente , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neurofibrossarcoma/genética , Neurofibrossarcoma/metabolismo , Prognóstico , Fator de Transcrição STAT3/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Ann Surg ; 273(4): 814-820, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188198

RESUMO

OBJECTIVE: To assess whether preoperative ultrasound (US) assessment of regional lymph nodes in patients who present with primary cutaneous melanoma provides accurate staging. BACKGROUND: It has been suggested that preoperative US could avoid the need for sentinel node (SN) biopsy, but in most single-institution reports, the sensitivity of preoperative US has been low. METHODS: Preoperative US data and SNB results were analyzed for patients enrolled at 20 centers participating in the screening phase of the second Multicenter Selective Lymphadenectomy Trial. Excised SNs were histopathologically assessed and considered positive if any melanoma was seen. RESULTS: SNs were identified and removed from 2859 patients who had preoperative US evaluation. Among those patients, 548 had SN metastases. US was positive (abnormal) in 87 patients (3.0%). Among SN-positive patients, 39 (7.1%) had an abnormal US. When analyzed by lymph node basin, 3302 basins were evaluated, and 38 were true positive (1.2%). By basin, the sensitivity of US was 6.6% (95% confidence interval: 4.6-8.7) and the specificity 98.0% (95% CI: 97.5-98.5). Median cross-sectional area of all SN metastases was 0.13 mm2; in US true-positive nodes, it was 6.8 mm2. US sensitivity increased with increasing Breslow thickness of the primary melanoma (0% for ≤1 mm thickness, 11.9% for >4 mm thickness). US sensitivity was not significantly greater with higher trial center volume or with pre-US lymphoscintigraphy. CONCLUSION: In the MSLT-II screening phase population, SN tumor volume was usually too small to be reliably detected by US. For accurate nodal staging to guide the management of melanoma patients, US is not an effective substitute for SN biopsy.


Assuntos
Excisão de Linfonodo , Linfonodos/diagnóstico por imagem , Melanoma/diagnóstico , Estadiamento de Neoplasias/métodos , Cuidados Pré-Operatórios/métodos , Neoplasias Cutâneas/diagnóstico , Ultrassonografia/métodos , Seguimentos , Humanos , Metástase Linfática , Melanoma/secundário , Melanoma/cirurgia , Estudos Retrospectivos , Neoplasias Cutâneas/cirurgia
12.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638620

RESUMO

Proliferative diabetic retinopathy (PDR), neovascular age-related macular degeneration (nvAMD), retinopathy of prematurity (ROP) and other eye diseases are characterized by retinal and/or choroidal neovascularization, ultimately causing vision loss in millions of people worldwide. nvAMD and PDR are associated with aging and the number of those affected is expected to increase as the global median age and life expectancy continue to rise. With this increase in prevalence, the development of novel, orally bioavailable therapies for neovascular eye diseases that target multiple pathways is critical, since current anti-vascular endothelial growth factor (VEGF) treatments, delivered by intravitreal injection, are accompanied with tachyphylaxis, a high treatment burden and risk of complications. One potential target is apurinic/apyrimidinic endonuclease 1/reduction-oxidation factor 1 (APE1/Ref-1). The multifunctional protein APE1/Ref-1 may be targeted via inhibitors of its redox-regulating transcription factor activation activity to modulate angiogenesis, inflammation, oxidative stress response and cell cycle in neovascular eye disease; these inhibitors also have neuroprotective effects in other tissues. An APE1/Ref-1 small molecule inhibitor is already in clinical trials for cancer, PDR and diabetic macular edema. Efforts to develop further inhibitors are underway. APE1/Ref-1 is a novel candidate for therapeutically targeting neovascular eye diseases and alleviating the burden associated with anti-VEGF intravitreal injections.


Assuntos
Neovascularização de Coroide/tratamento farmacológico , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Neovascularização Retiniana/tratamento farmacológico , Administração Oral , Animais , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Retinopatia Diabética/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/uso terapêutico , Humanos , Injeções Intravítreas , Degeneração Macular/tratamento farmacológico , Camundongos , Modelos Moleculares , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
13.
J Biol Chem ; 294(13): 5198-5207, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30705092

RESUMO

The base excision repair (BER) pathway is an important DNA repair pathway and is essential for immune responses. In fact, it regulates both the antigen-stimulated somatic hypermutation (SHM) process and plays a central function in the process of class switch recombination (CSR). For both processes, a central role for apurinic/apyrimidinic endonuclease 1 (APE1) has been demonstrated. APE1 acts also as a master regulator of gene expression through its redox activity. APE1's redox activity stimulates the DNA-binding activity of several transcription factors, including NF-κB and a few others involved in inflammation and in immune responses. Therefore, it is possible that APE1 has a role in regulating the CSR through its function as a redox coactivator. The present study was undertaken to address this question. Using the CSR-competent mouse B-cell line CH12F3 and a combination of specific inhibitors of APE1's redox (APX3330) and repair (compound 3) activities, APE1-deficient or -reconstituted cell lines expressing redox-deficient or endonuclease-deficient proteins, and APX3330-treated mice, we determined the contributions of both endonuclease and redox functions of APE1 in CSR. We found that APE1's endonuclease activity is essential for IgA-class switch recombination. We provide evidence that the redox function of APE1 appears to play a role in regulating CSR through the interleukin-6 signaling pathway and in proper IgA expression. Our results shed light on APE1's redox function in the control of cancer growth through modulation of the IgA CSR process.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Imunoglobulina A/genética , Switching de Imunoglobulina , Animais , Linfócitos B/metabolismo , Linhagem Celular , Reparo do DNA , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Transdução de Sinais
14.
J Pharmacol Exp Ther ; 367(1): 108-118, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30076264

RESUMO

Ocular neovascular diseases like wet age-related macular degeneration are a major cause of blindness. Novel therapies are greatly needed for these diseases. One appealing antiangiogenic target is reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1). This protein can act as a redox-sensitive transcriptional activator for nuclear factor (NF)-κB and other proangiogenic transcription factors. An existing inhibitor of Ref-1's function, APX3330, previously showed antiangiogenic effects. Here, we developed improved APX3330 derivatives and assessed their antiangiogenic activity. We synthesized APX2009 and APX2014 and demonstrated enhanced inhibition of Ref-1 function in a DNA-binding assay compared with APX3330. Both compounds were antiproliferative against human retinal microvascular endothelial cells (HRECs; GI50 APX2009: 1.1 µM, APX2014: 110 nM) and macaque choroidal endothelial cells (Rf/6a; GI50 APX2009: 26 µM, APX2014: 5.0 µM). Both compounds significantly reduced the ability of HRECs and Rf/6a cells to form tubes at mid-nanomolar concentrations compared with control, and both significantly inhibited HREC and Rf/6a cell migration in a scratch wound assay, reducing NF-κB activation and downstream targets. Ex vivo, APX2009 and APX2014 inhibited choroidal sprouting at low micromolar and high nanomolar concentrations, respectively. In the laser-induced choroidal neovascularization mouse model, intraperitoneal APX2009 treatment significantly decreased lesion volume by 4-fold compared with vehicle (P < 0.0001, ANOVA with Dunnett's post-hoc tests), without obvious intraocular or systemic toxicity. Thus, Ref-1 inhibition with APX2009 and APX2014 blocks ocular angiogenesis in vitro and ex vivo, and APX2009 is an effective systemic therapy for choroidal neovascularization in vivo, establishing Ref-1 inhibition as a promising therapeutic approach for ocular neovascularization.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Neovascularização Patológica/tratamento farmacológico , Retina/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Humanos , Macaca , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neovascularização Patológica/metabolismo , Retina/metabolismo
17.
Ann Surg Oncol ; 24(13): 3991-4000, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29019177

RESUMO

BACKGROUND: This phase III study was undertaken to evaluate the efficacy of an allogeneic whole-cell vaccine (Canvaxin™) plus bacillus Calmette-Guerin (BCG) after complete resection of stage IV melanoma. METHODS: After complete resection of ≤5 distant metastases, patients were randomly assigned to BCG+Canvaxin (BCG/Cv) or BCG+placebo (BCG/Pl). The primary endpoint was overall survival (OS); secondary endpoints were disease-free survival (DFS), and immune response measured by skin test (ClinicalTrials.gov identifier: NCT00052156). RESULTS: Beginning in May 1998, 496 patients were randomized. In April 2005, the Data Safety Monitoring Board recommended stopping enrollment due to a low probability of efficacy. At that time, median OS and 5-year OS rate were 38.6 months and 44.9%, respectively, for BCG/Pl versus 31.4 months and 39.6% in the BCG/Cv group (hazard ratio (HR), 1.18; p = 0.250). Follow-up was extended at several trial sites through March 2010. Median OS and 5-year and 10-year survival was 39.1 months, 43.3 and 33.3%, respectively, for BCG/Pl versus 34.9 months, 42.5 and 36.4%, in the BCG/Cv group (HR 1.053; p = 0.696). Median DFS, 5- and 10-year DFS were 7.6 months, 23.8 and 21.7%, respectively, for BCG/Pl versus 8.5 months, 30.0%, and 30.0%, respectively, for the BCG/Cv group (HR 0.882; p = 0.260). Positive DTH skin testing correlated with increased survival. DISCUSSION: In this, the largest study of postsurgical adjuvant therapy for stage IV melanoma reported to date, BCG/Cv did not improve outcomes over BCG/placebo. Favorable long-term survival among study patients suggests that metastasectomy should be considered for selected patients with stage IV melanoma.


Assuntos
Vacinas Anticâncer/uso terapêutico , Imunoterapia/mortalidade , Melanoma/mortalidade , Neoplasias Cutâneas/mortalidade , Terapia Combinada , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Masculino , Melanoma/patologia , Melanoma/cirurgia , Melanoma/terapia , Pessoa de Meia-Idade , Prognóstico , Neoplasias Cutâneas/secundário , Neoplasias Cutâneas/cirurgia , Neoplasias Cutâneas/terapia , Taxa de Sobrevida
18.
Ann Surg Oncol ; 24(8): 2089-2094, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28224364

RESUMO

BACKGROUND: Although a well-established causative relationship exists between smoking and several epithelial cancers, the association of smoking with metastatic progression in melanoma is not well studied. We hypothesized that smokers would be at increased risk for melanoma metastasis as assessed by sentinel lymph node (SLN) biopsy. METHODS: Data from the first international Multicenter Selective Lymphadenectomy Trial (MSLT-I) and the screening-phase of the second trial (MSLT-II) were analyzed to determine the association of smoking with clinicopathologic variables and SLN metastasis. RESULTS: Current smoking was strongly associated with SLN metastasis (p = 0.004), even after adjusting for other predictors of metastasis. Among 4231 patients (1025 in MSLT-I and 3206 in MSLT-II), current or former smoking was also independently associated with ulceration (p < 0.001 and p < 0.001, respectively). Compared with current smoking, never smoking was independently associated with decreased Breslow thickness in multivariate analysis (p = 0.002) and with a 0.25 mm predicted decrease in thickness. CONCLUSION: The direct correlation between current smoking and SLN metastasis of primary cutaneous melanoma was independent of its correlation with tumor thickness and ulceration. Smoking cessation should be strongly encouraged among patients with or at risk for melanoma.


Assuntos
Melanoma/patologia , Linfonodo Sentinela/patologia , Neoplasias Cutâneas/secundário , Fumar/efeitos adversos , Feminino , Seguimentos , Humanos , Agências Internacionais , Excisão de Linfonodo , Metástase Linfática , Masculino , Melanoma/etiologia , Melanoma/cirurgia , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Linfonodo Sentinela/cirurgia , Biópsia de Linfonodo Sentinela , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/cirurgia , Melanoma Maligno Cutâneo
19.
Nature ; 480(7377): 387-90, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22113612

RESUMO

Activated RAS promotes dimerization of members of the RAF kinase family. ATP-competitive RAF inhibitors activate ERK signalling by transactivating RAF dimers. In melanomas with mutant BRAF(V600E), levels of RAS activation are low and these drugs bind to BRAF(V600E) monomers and inhibit their activity. This tumour-specific inhibition of ERK signalling results in a broad therapeutic index and RAF inhibitors have remarkable clinical activity in patients with melanomas that harbour mutant BRAF(V600E). However, resistance invariably develops. Here, we identify a new resistance mechanism. We find that a subset of cells resistant to vemurafenib (PLX4032, RG7204) express a 61-kDa variant form of BRAF(V600E), p61BRAF(V600E), which lacks exons 4-8, a region that encompasses the RAS-binding domain. p61BRAF(V600E) shows enhanced dimerization in cells with low levels of RAS activation, as compared to full-length BRAF(V600E). In cells in which p61BRAF(V600E) is expressed endogenously or ectopically, ERK signalling is resistant to the RAF inhibitor. Moreover, a mutation that abolishes the dimerization of p61BRAF(V600E) restores its sensitivity to vemurafenib. Finally, we identified BRAF(V600E) splicing variants lacking the RAS-binding domain in the tumours of six of nineteen patients with acquired resistance to vemurafenib. These data support the model that inhibition of ERK signalling by RAF inhibitors is dependent on levels of RAS-GTP too low to support RAF dimerization and identify a novel mechanism of acquired resistance in patients: expression of splicing isoforms of BRAF(V600E) that dimerize in a RAS-independent manner.


Assuntos
Processamento Alternativo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Multimerização Proteica/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Éxons/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/enzimologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/química , Sulfonamidas/farmacologia , Vemurafenib
20.
J Biol Chem ; 290(5): 3057-68, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25492865

RESUMO

Apurinic/apyrimidinic endonuclease/redox factor-1 (APE1/Ref-1) (henceforth referred to as Ref-1) is a multifunctional protein that in addition to its base excision DNA repair activity exerts redox control of multiple transcription factors, including nuclear factor κ-light chain enhancer of activated B cells (NF-κB), STAT3, activator protein-1 (AP-1), hypoxia-inducible factor-1 (HIF-1), and tumor protein 53 (p53). In recent years, Ref-1 has emerged as a promising therapeutic target in cancer, particularly in pancreatic ductal carcinoma. Although a significant amount of research has centered on Ref-1, no wide-ranging approach had been performed on the effects of Ref-1 inhibition and transcription factor activity perturbation. Starting with a broader approach, we identified a previously unsuspected effect on the nuclear factor erythroid-related factor 2 (NRF2), a critical regulator of cellular defenses against oxidative stress. Based on genetic and small molecule inhibitor-based methodologies, we demonstrated that repression of Ref-1 potently activates NRF2 and its downstream targets in a dose-dependent fashion, and that the redox, rather than the DNA repair function of Ref-1 is critical for this effect. Intriguingly, our results also indicate that this pathway does not involve reactive oxygen species. The link between Ref-1 and NRF2 appears to be present in all cells tested in vitro, noncancerous and cancerous, including patient-derived tumor samples. In particular, we focused on understanding the implications of the novel interaction between these two pathways in primary pancreatic ductal adenocarcinoma tumor cells and provide the first evidence that this mechanism has implications for overcoming the resistance against experimental drugs targeting Ref-1 activity, with clear translational implications.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Humanos , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Neoplasias Pancreáticas/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA