Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Blood ; 135(25): 2224-2234, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32232481

RESUMO

As part of a randomized, prospective clinical trial in large cell lymphoma, we conducted serial fluorodeoxyglucose positron emission tomography (FDG-PET) at baseline, after 2 cycles of chemotherapy (interim PET [i-PET]), and at end of treatment (EoT) to identify biomarkers of response that are predictive of remission and survival. Scans were interpreted in a core laboratory by 2 imaging experts, using the visual Deauville 5-point scale (5-PS), and by calculating percent change in FDG uptake (change in standardized uptake value [ΔSUV]). Visual scores of 1 through 3 and ΔSUV ≥66% were prospectively defined as negative. Of 524 patients enrolled in the parent trial, 169 agreed to enroll in the PET substudy and 158 were eligible for final analysis. In this selected population, all had FDG-avid disease at baseline; by 5-PS, 55 (35%) remained positive on i-PET and 28 (18%) on EoT PET. Median ΔSUV on i-PET was 86.2%. With a median follow-up of 5 years, ΔSUV, as continuous variable, was associated with progression-free survival (PFS) (hazard ratio [HR] = 0.99; 95% confidence interval [CI], 0.97-1.00; P = .02) and overall survival (OS) (HR, 0.98; 95% CI, 0.97-0.99; P = .03). ΔSUV ≥66% was predictive of OS (HR, 0.31; 95% CI, 0.11-0.85; P = .02) but not PFS (HR, 0.47; 95% CI, 0.19-1.13; P = .09). Visual 5-PS on i-PET did not predict outcome. ΔSUV, but not visual analysis, on i-PET predicted OS in DLBCL, although the low number of events limited the statistical analysis. These data may help guide future clinical trials using PET response-adapted therapy. This trial was registered at www.clinicaltrials.gov as #NCT00118209.


Assuntos
Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/administração & dosagem , Etoposídeo/administração & dosagem , Feminino , Radioisótopos de Flúor , Fluordesoxiglucose F18 , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/mortalidade , Masculino , Pessoa de Meia-Idade , Prednisona/administração & dosagem , Prognóstico , Intervalo Livre de Progressão , Modelos de Riscos Proporcionais , Estudos Prospectivos , Compostos Radiofarmacêuticos , Rituximab/administração & dosagem , Vincristina/administração & dosagem , Adulto Jovem
2.
Nat Rev Cancer ; 7(7): 508-18, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17568791

RESUMO

Despite significant interest from the research community and the population in general, drug approvals for cancer prevention and/or cancer risk reduction are few. This is due, in part, to the requirement that new cancer-preventive drugs must first be shown to be efficacious in reducing cancer incidence or mortality. Moreover, such drugs need to have proven safety for long-term administration. This process can be improved by focusing on precancer (intraepithelial neoplasia) to identify subjects at risk and prove efficacy in shorter, smaller trials as well as on detecting early markers of potential toxicities of chronic exposure to cancer-preventive drug regimens.


Assuntos
Anticarcinógenos/uso terapêutico , Carcinoma in Situ/prevenção & controle , Carcinoma in Situ/epidemiologia , Carcinoma in Situ/genética , Humanos , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/prevenção & controle , Comportamento de Redução do Risco , Segurança
4.
J Radiol Prot ; 34(2): R25-52, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24727460

RESUMO

The United States radiation medical countermeasures (MCM) programme for radiological and nuclear incidents has been focusing on developing mitigators for the acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE), and biodosimetry technologies to provide radiation dose assessments for guiding treatment. Because a nuclear accident or terrorist incident could potentially expose a large number of people to low to moderate doses of ionising radiation, and thus increase their excess lifetime cancer risk, there is an interest in developing mitigators for this purpose. This article discusses the current status, issues, and challenges regarding development of mitigators against radiation-induced cancers. The challenges of developing mitigators for ARS include: the long latency between exposure and cancer manifestation, limitations of animal models, potential side effects of the mitigator itself, potential need for long-term use, the complexity of human trials to demonstrate effectiveness, and statistical power constraints for measuring health risks (and reduction of health risks after mitigation) following relatively low radiation doses (<0.75 Gy). Nevertheless, progress in the understanding of the molecular mechanisms resulting in radiation injury, along with parallel progress in dose assessment technologies, make this an opportune, if not critical, time to invest in research strategies that result in the development of agents to lower the risk of radiation-induced cancers for populations that survive a significant radiation exposure incident.


Assuntos
Desenho de Fármacos , Neoplasias Induzidas por Radiação/diagnóstico , Neoplasias Induzidas por Radiação/prevenção & controle , Proteção Radiológica/métodos , Protetores contra Radiação/uso terapêutico , Liberação Nociva de Radioativos , Radiometria/métodos , Humanos , Doses de Radiação , Protetores contra Radiação/síntese química , Medição de Risco/métodos
5.
Cancer Med ; 12(7): 8211-8217, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36799072

RESUMO

BACKGROUND: Quantitative methods of Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) interpretation, including the percent change in FDG uptake from baseline (ΔSUV), are under investigation in lymphoma to overcome challenges associated with visual scoring systems (VSS) such as the Deauville 5-point scale (5-PS). METHODS: In CALGB 50303, patients with DLBCL received frontline R-CHOP or DA-EPOCH-R, and although there were no significant associations between interim PET responses assessed centrally after cycle 2 (iPET) using 5-PS with progression-free survival (PFS) or overall survival (OS), there were significant associations between central determinations of iPET ∆SUV with PFS/OS. In this patient cohort, we retrospectively compared local vs central iPET readings and evaluated associations between local imaging data and survival outcomes. RESULTS: Agreement between local and central review was moderate (kappa = 0.53) for VSS and high (kappa = 0.81) for ∆SUV categories (<66% vs. ≥66%). ∆SUV ≥66% at iPET was significantly associated with PFS (p = 0.03) and OS (p = 0.002), but VSS was not. Associations with PFS/OS when applying local review vs central review were comparable. CONCLUSIONS: These data suggest that local PET interpretation for response determination may be acceptable in clinical trials. Our findings also highlight limitations of VSS and call for incorporation of more objective measures of response assessment in clinical trials.


Assuntos
Fluordesoxiglucose F18 , Linfoma Difuso de Grandes Células B , Humanos , Estudos Retrospectivos , Intervalo Livre de Doença , Tomografia por Emissão de Pósitrons/métodos , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Prognóstico
6.
Cancer Res ; 83(8): 1175-1182, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625843

RESUMO

Big data in healthcare can enable unprecedented understanding of diseases and their treatment, particularly in oncology. These data may include electronic health records, medical imaging, genomic sequencing, payor records, and data from pharmaceutical research, wearables, and medical devices. The ability to combine datasets and use data across many analyses is critical to the successful use of big data and is a concern for those who generate and use the data. Interoperability and data quality continue to be major challenges when working with different healthcare datasets. Mapping terminology across datasets, missing and incorrect data, and varying data structures make combining data an onerous and largely manual undertaking. Data privacy is another concern addressed by the Health Insurance Portability and Accountability Act, the Common Rule, and the General Data Protection Regulation. The use of big data is now included in the planning and activities of the FDA and the European Medicines Agency. The willingness of organizations to share data in a precompetitive fashion, agreements on data quality standards, and institution of universal and practical tenets on data privacy will be crucial to fully realizing the potential for big data in medicine.


Assuntos
Big Data , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Medicina de Precisão , Armazenamento e Recuperação da Informação
7.
Cancer Res ; 83(8): 1183-1190, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625851

RESUMO

The analysis of big healthcare data has enormous potential as a tool for advancing oncology drug development and patient treatment, particularly in the context of precision medicine. However, there are challenges in organizing, sharing, integrating, and making these data readily accessible to the research community. This review presents five case studies illustrating various successful approaches to addressing such challenges. These efforts are CancerLinQ, the American Association for Cancer Research Project GENIE, Project Data Sphere, the National Cancer Institute Genomic Data Commons, and the Veterans Health Administration Clinical Data Initiative. Critical factors in the development of these systems include attention to the use of robust pipelines for data aggregation, common data models, data deidentification to enable multiple uses, integration of data collection into physician workflows, terminology standardization and attention to interoperability, extensive quality assurance and quality control activity, incorporation of multiple data types, and understanding how data resources can be best applied. By describing some of the emerging resources, we hope to inspire consideration of the secondary use of such data at the earliest possible step to ensure the proper sharing of data in order to generate insights that advance the understanding and the treatment of cancer.


Assuntos
Big Data , Neoplasias , Humanos , Estados Unidos/epidemiologia , Neoplasias/genética , Neoplasias/terapia , Oncologia , Atenção à Saúde
8.
J Transl Med ; 10: 138, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22747748

RESUMO

This manuscript summarizes current thinking on the value and promise of evolving circulating tumor cell (CTC) technologies for cancer patient diagnosis, prognosis, and response to therapy, as well as accelerating oncologic drug development. Moving forward requires the application of the classic steps in biomarker development-analytical and clinical validation and clinical qualification for specific contexts of use. To that end, this review describes methods for interactive comparisons of proprietary new technologies, clinical trial designs, a clinical validation qualification strategy, and an approach for effectively carrying out this work through a public-private partnership that includes test developers, drug developers, clinical trialists, the US Food & Drug Administration (FDA) and the US National Cancer Institute (NCI).


Assuntos
Células Neoplásicas Circulantes , Biomarcadores Tumorais , Humanos
9.
Radiology ; 259(3): 875-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21325035

RESUMO

UNLABELLED: Quantitative imaging biomarkers could speed the development of new treatments for unmet medical needs and improve routine clinical care. However, it is not clear how the various regulatory and nonregulatory (eg, reimbursement) processes (often referred to as pathways) relate, nor is it clear which data need to be collected to support these different pathways most efficiently, given the time- and cost-intensive nature of doing so. The purpose of this article is to describe current thinking regarding these pathways emerging from diverse stakeholders interested and active in the definition, validation, and qualification of quantitative imaging biomarkers and to propose processes to facilitate the development and use of quantitative imaging biomarkers. A flexible framework is described that may be adapted for each imaging application, providing mechanisms that can be used to develop, assess, and evaluate relevant biomarkers. From this framework, processes can be mapped that would be applicable to both imaging product development and to quantitative imaging biomarker development aimed at increasing the effectiveness and availability of quantitative imaging. SUPPLEMENTAL MATERIAL: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.10100800/-/DC1.


Assuntos
Biomarcadores , Diagnóstico por Imagem , Difusão de Inovações , Avaliação da Tecnologia Biomédica/normas , Pesquisa Biomédica/organização & administração , Conflito de Interesses , Aprovação de Equipamentos , Europa (Continente) , Humanos , Valor Preditivo dos Testes , Estados Unidos , United States Food and Drug Administration
10.
Artigo em Inglês | MEDLINE | ID: mdl-34250423

RESUMO

We report the results from a Foundation for the National Institutes of Health Biomarkers Consortium project to address the absence of well-validated quality control materials (QCMs) for circulating tumor DNA (ctDNA) testing. This absence is considered a cause of variance and inconsistencies in translating ctDNA results into clinical actions. METHODS: In this phase I study, QCMs with 14 clinically relevant mutations representing single nucleotide variants, insertions or deletions (indels), translocations, and copy number variants were sourced from three commercial manufacturers with variant allele frequencies (VAFs) of 5%, 2.5%, 1%, 0.1%, and 0%. Four laboratories tested samples in quadruplicate using two allele-specific droplet digital polymerase chain reaction and three (amplicon and hybrid capture) next-generation sequencing (NGS) panels. RESULTS: The two droplet digital polymerase chain reaction assays reported VAF values very close to the manufacturers' claimed concentrations for all QCMs. NGS assays reported most single nucleotide variants and indels, but not translocations, close to the expected VAF values. Notably, two NGS assays reported lower VAF than expected for all translocations in all QCM mixtures, possibly related to technical challenges detecting these variants. The ability to call ERBB2 copy number amplifications varied across assays. All three QCMs provided valuable insight into assay precision. Each assay across all variant types demonstrated dropouts at 0.1%, suggesting that the QCM can serve for testing of an assay's limit of detection with confidence claims for specific variants. CONCLUSION: These results support the utility of the QCM in testing ctDNA assay analytical performance. However, unique designs and manufacturing methods for the QCM, and variations in a laboratory's testing configuration, may require testing of multiple QCMs to find the best reagents for accurate result interpretation.


Assuntos
DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/genética , Reação em Cadeia da Polimerase , Controle de Qualidade , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/sangue , Variações do Número de Cópias de DNA , Frequência do Gene , Humanos , Mutação/genética , National Institutes of Health (U.S.) , Neoplasias/sangue , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA