Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193554

RESUMO

Beyond well-documented confinement and surface effects arising from the large internal surface and severely confining porosity of nanoporous hosts, the transport of nanoconfined fluids remains puzzling in many aspects. With striking examples such as memory, i.e., non-viscous effects, intermittent dynamics, and surface barriers, the dynamics of fluids in nanoconfinement challenge classical formalisms (e.g., random walk, viscous/advective transport)-especially for molecular pore sizes. In this context, while molecular frameworks such as intermittent Brownian motion, free volume theory, and surface diffusion are available to describe the self-diffusion of a molecularly confined fluid, a microscopic theory for collective diffusion (i.e., permeability), which characterizes the flow induced by a thermodynamic gradient, is lacking. Here, to fill this knowledge gap, we invoke the concept of "De Gennes narrowing," which relates the wavevector-dependent collective diffusivity D0(q) to the fluid structure factor S(q). First, using molecular simulation for a simple yet representative fluid confined in a prototypical solid (zeolite), we unravel an essential coupling between the wavevector-dependent collective diffusivity and the structural ordering imposed on the fluid by the crystalline nanoporous host. Second, despite this complex interplay with marked Bragg peaks in the fluid structure, the fluid collective dynamics is shown to be accurately described through De Gennes narrowing. Moreover, in contrast to the bulk fluid, the departure from De Gennes narrowing for the confined fluid in the macroscopic limit remains small as the fluid/solid interactions in severe confinement screen collective effects and, hence, weaken the wavevector dependence of collective transport.

2.
Langmuir ; 38(18): 5428-5438, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35486814

RESUMO

Molecular simulations and experiments are used to investigate methane adsorption in bulk and thin layers of MFI zeolite (silicalite-1). After comparing the theoretical adsorption data obtained using Grand Canonical Monte Carlo simulations for bulk MFI at various temperatures against experiments, zeolite layers with different crystalline orientations and levels of surface flexibility are considered. The data obtained for such prototypical systems allow us to rationalize both the qualitative and quantitative impact of external surface in nanoporous solids. In particular, due to strong confinement in zeolite pores, methane is found to adsorb at low pressures in the core of the zeolite while external surface adsorption occurs at pressures where the internal porosity of zeolite is saturated. Using Polanyi's adsorption potential theory, which is derived here from Hill's general scheme for adsorption, we provide a simple thermodynamic formalism to predict consistently adsorption both in the internal porosity and at the external surface of nanoporous solids. While this seminal theory has been already applied for gases in nanoporous solids, its extension to describe both surface and volume adsorption is important to provide a general rational framework for fluid adsorption in finely divided materials. We also discuss the applicability of this formalism for gas adsorption data under supercritical conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA