Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
NAR Genom Bioinform ; 6(2): lqae059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38800827

RESUMO

Recent advancements in shRNA and Cas protein technologies have enabled functional screening methods targeting genes or non-coding regions using single or pooled shRNA and sgRNA. CRISPR-based systems have also been developed for modulating DNA accessibility, resulting in CRISPR-mediated interference (CRISPRi) or activation (CRISPRa) of targeted genes or genomic DNA elements. However, there is still a lack of software tools for integrating diverse array of functional genomics screening outputs that could offer a cohesive framework for comprehensive data integration. Here, we developed PitViper, a flexible and interactive open-source software designed to fill this gap, providing reliable results for the type of elements being screened. It is an end-to-end automated and reproducible bioinformatics pipeline integrating gold-standard methods for functional screening analysis. Our sensitivity analyses demonstrate that PitViper is a useful tool for identifying potential super-enhancer liabilities in a leukemia cell line through genome-wide CRISPRi-based screening. It offers a robust, flexible, and interactive solution for integrating data analysis and reanalysis from functional screening methods, making it a valuable resource for researchers in the field.

2.
Nat Cancer ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816660

RESUMO

Dose-limiting toxicity poses a major limitation to the clinical utility of targeted cancer therapies, often arising from target engagement in nonmalignant tissues. This obstacle can be minimized by targeting cancer dependencies driven by proteins with tissue-restricted and/or tumor-restricted expression. In line with another recent report, we show here that, in acute myeloid leukemia (AML), suppression of the myeloid-restricted PIK3CG/p110γ-PIK3R5/p101 axis inhibits protein kinase B/Akt signaling and compromises AML cell fitness. Furthermore, silencing the genes encoding PIK3CG/p110γ or PIK3R5/p101 sensitizes AML cells to established AML therapies. Importantly, we find that existing small-molecule inhibitors against PIK3CG are insufficient to achieve a sustained long-term antileukemic effect. To address this concern, we developed a proteolysis-targeting chimera (PROTAC) heterobifunctional molecule that specifically degrades PIK3CG and potently suppresses AML progression alone and in combination with venetoclax in human AML cell lines, primary samples from patients with AML and syngeneic mouse models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA