Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2024, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041189

RESUMO

Multiple processes transport carbon into the deep ocean as part of the biological carbon pump, leading to long-term carbon sequestration. However, our ability to predict future changes in these processes is hampered by the absence of studies that have simultaneously quantified all carbon pump pathways. Here, we quantify carbon export and sequestration in the California Current Ecosystem resulting from (1) sinking particles, (2) active transport by diel vertical migration, and (3) the physical pump (subduction + vertical mixing of particles). We find that sinking particles are the most important and export 9.0 mmol C m-2 d-1 across 100-m depth while sequestering 3.9 Pg C. The physical pump exports more carbon from the shallow ocean than active transport (3.8 vs. 2.9 mmol C m-2 d-1), although active transport sequesters more carbon (1.0 vs. 0.8 Pg C) because of deeper remineralization depths. We discuss the implications of these results for understanding biological carbon pump responses to climate change.


Assuntos
Sequestro de Carbono , Água do Mar , Ecossistema , Proteínas de Membrana Transportadoras , Carbono/metabolismo , Carvão Vegetal
2.
Nat Commun ; 14(1): 425, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732522

RESUMO

The Southern Ocean contributes substantially to the global biological carbon pump (BCP). Salps in the Southern Ocean, in particular Salpa thompsoni, are important grazers that produce large, fast-sinking fecal pellets. Here, we quantify the salp bloom impacts on microbial dynamics and the BCP, by contrasting locations differing in salp bloom presence/absence. Salp blooms coincide with phytoplankton dominated by diatoms or prymnesiophytes, depending on water mass characteristics. Their grazing is comparable to microzooplankton during their early bloom, resulting in a decrease of ~1/3 of primary production, and negative phytoplankton rates of change are associated with all salp locations. Particle export in salp waters is always higher, ranging 2- to 8- fold (average 5-fold), compared to non-salp locations, exporting up to 46% of primary production out of the euphotic zone. BCP efficiency increases from 5 to 28% in salp areas, which is among the highest recorded in the global ocean.


Assuntos
Diatomáceas , Haptófitas , Carbono , Fitoplâncton , Oceanos e Mares , Água do Mar
3.
J Plankton Res ; 44(5): 763-781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045950

RESUMO

We used linear inverse ecosystem modeling techniques to assimilate data from extensive Lagrangian field experiments into a mass-balance constrained food web for the Gulf of Mexico open-ocean ecosystem. This region is highly oligotrophic, yet Atlantic bluefin tuna (ABT) travel long distances from feeding grounds in the North Atlantic to spawn there. Our results show extensive nutrient regeneration fueling primary productivity (mostly by cyanobacteria and other picophytoplankton) in the upper euphotic zone. The food web is dominated by the microbial loop (>70% of net primary productivity is respired by heterotrophic bacteria and protists that feed on them). By contrast, herbivorous food web pathways from phytoplankton to metazoan zooplankton process <10% of the net primary production in the mixed layer. Nevertheless, ABT larvae feed preferentially on podonid cladocerans and other suspension-feeding zooplankton, which in turn derive much of their nutrition from nano- and micro-phytoplankton (mixotrophic flagellates, and to a lesser extent, diatoms). This allows ABT larvae to maintain a comparatively low trophic level (~4.2 for preflexion and postflexion larvae), which increases trophic transfer from phytoplankton to larval fish.

4.
Nat Commun ; 12(1): 3325, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083545

RESUMO

In contrast to its productive coastal margins, the open-ocean Gulf of Mexico (GoM) is notable for highly stratified surface waters with extremely low nutrient and chlorophyll concentrations. Field campaigns in 2017 and 2018 identified low rates of turbulent mixing, which combined with oligotrophic nutrient conditions, give very low estimates for diffusive flux of nitrate into the euphotic zone (< 1 µmol N m-2 d-1). Estimates of local N2-fixation are similarly low. In comparison, measured export rates of sinking particulate organic nitrogen (PON) from the euphotic zone are 2 - 3 orders of magnitude higher (i.e. 462 - 1144 µmol N m-2 d-1). We reconcile these disparate findings with regional scale dynamics inferred independently from remote-sensing products and a regional biogeochemical model and find that laterally-sourced organic matter is sufficient to support >90% of open-ocean nitrogen export in the GoM. Results show that lateral transport needs to be closely considered in studies of biogeochemical balances, particularly for basins enclosed by productive coasts.


Assuntos
Nitrogênio/análise , Água do Mar/química , Carbono/análise , Difusão , Golfo do México , Nitratos/análise , Fixação de Nitrogênio , Movimentos da Água
5.
PLoS One ; 13(6): e0199123, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29912928

RESUMO

Oceanographic field programs often use δ15N biogeochemical measurements and in situ rate measurements to investigate nitrogen cycling and planktonic ecosystem structure. However, integrative modeling approaches capable of synthesizing these distinct measurement types are lacking. We develop a novel approach for incorporating δ15N isotopic data into existing Markov Chain Monte Carlo (MCMC) random walk methods for solving linear inverse ecosystem models. We test the ability of this approach to recover food web indices (nitrate uptake, nitrogen fixation, zooplankton trophic level, and secondary production) derived from forward models simulating the planktonic ecosystems of the California Current and Amazon River Plume. We show that the MCMC with δ15N approach typically does a better job of recovering ecosystem structure than the standard MCMC or L2 minimum norm (L2MN) approaches, and also outperforms an L2MN with δ15N approach. Furthermore, we find that the MCMC with δ15N approach is robust to the removal of input equations and hence is well suited to typical pelagic ecosystem studies for which the system is usually vastly under-constrained. Our approach is easily extendable for use with δ13C isotopic measurements or variable carbon:nitrogen stoichiometry.


Assuntos
Ecossistema , Ciclo do Nitrogênio , Isótopos de Nitrogênio/metabolismo , Modelos Lineares , Cadeias de Markov , Método de Monte Carlo , Oceanografia/métodos , Plâncton/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA