Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 78(2): 228-237, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30459279

RESUMO

OBJECTIVE: Immune complexes (ICs) play a critical role in the pathology of autoimmune diseases. The aim of this study was to generate and characterise a first-in-class anti-FcγRIIA antibody (Ab) VIB9600 (previously known as MEDI9600) that blocks IgG immune complex-mediated cellular activation for clinical development. METHODS: VIB9600 was humanised and optimised from the IV.3 Ab. Binding affinity and specificity were determined by Biacore and ELISA. Confocal microscopy, Flow Cytometry-based assays and binding competition assays were used to assess the mode of action of the antibody. In vitro cell-based assays were used to demonstrate suppression of IC-mediated inflammatory responses. In vivo target suppression and efficacy was demonstrated in FcγRIIA-transgenic mice. Single-dose pharmacokinetic (PK)/pharmacodynamic study multiple dose Good Laboratory Practice (GLP) toxicity studies were conducted in non-human primates. RESULTS: We generated a humanised effector-deficient anti-FcγRIIA antibody (VIB9600) that potently blocks autoantibody and IC-mediated proinflammatory responses. VIB9600 suppresses FcγRIIA activation by blocking ligand engagement and by internalising FcγRIIA from the cell surface. VIB9600 inhibits IC-induced type I interferons from plasmacytoid dendritic cells (involved in SLE), antineutrophil cytoplasmic antibody (ANCA)-induced production of reactive oxygen species by neutrophils (involved in ANCA-associated vasculitis) and IC-induced tumour necrosis factor α and interleukin-6 production (involved in rheumatoid arthritis). In FcγRIIA transgenic mice, VIB9600 suppressed antiplatelet antibody-induced thrombocytopaenia, acute anti-GBM Ab-induced nephritis and anticollagen Ab-induced arthritis. VIB9600 also exhibited favourable PK and safety profiles in cynomolgus monkey studies. CONCLUSIONS: VIB9600 is a specific humanised antibody antagonist of FcγRIIA with null effector function that warrants further clinical development for the treatment of IC-mediated diseases.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Complexo Antígeno-Anticorpo/efeitos dos fármacos , Doenças Autoimunes/tratamento farmacológico , Fatores Imunológicos/farmacologia , Receptores de IgG/imunologia , Animais , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Complexo Antígeno-Anticorpo/imunologia , Doenças Autoimunes/imunologia , Células Dendríticas/imunologia , Humanos , Imunoglobulina G/imunologia , Interleucina-6/imunologia , Macaca fascicularis , Camundongos , Camundongos Transgênicos , Neutrófilos/imunologia , Espécies Reativas de Oxigênio/imunologia , Fator de Necrose Tumoral alfa/imunologia
2.
Sci Rep ; 13(1): 9825, 2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330528

RESUMO

Interleukin (IL)-33 is a broad-acting alarmin cytokine that can drive inflammatory responses following tissue damage or infection and is a promising target for treatment of inflammatory disease. Here, we describe the identification of tozorakimab (MEDI3506), a potent, human anti-IL-33 monoclonal antibody, which can inhibit reduced IL-33 (IL-33red) and oxidized IL-33 (IL-33ox) activities through distinct serum-stimulated 2 (ST2) and receptor for advanced glycation end products/epidermal growth factor receptor (RAGE/EGFR complex) signalling pathways. We hypothesized that a therapeutic antibody would require an affinity higher than that of ST2 for IL-33, with an association rate greater than 107 M-1 s-1, to effectively neutralize IL-33 following rapid release from damaged tissue. An innovative antibody generation campaign identified tozorakimab, an antibody with a femtomolar affinity for IL-33red and a fast association rate (8.5 × 107 M-1 s-1), which was comparable to soluble ST2. Tozorakimab potently inhibited ST2-dependent inflammatory responses driven by IL-33 in primary human cells and in a murine model of lung epithelial injury. Additionally, tozorakimab prevented the oxidation of IL-33 and its activity via the RAGE/EGFR signalling pathway, thus increasing in vitro epithelial cell migration and repair. Tozorakimab is a novel therapeutic agent with a dual mechanism of action that blocks IL-33red and IL-33ox signalling, offering potential to reduce inflammation and epithelial dysfunction in human disease.


Assuntos
Inflamação , Proteína 1 Semelhante a Receptor de Interleucina-1 , Camundongos , Humanos , Animais , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Inflamação/metabolismo , Interleucina-33/metabolismo , Citocinas/metabolismo , Receptores ErbB/metabolismo , Transdução de Sinais
3.
Nat Commun ; 6: 8327, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26365875

RESUMO

In response to infections and irritants, the respiratory epithelium releases the alarmin interleukin (IL)-33 to elicit a rapid immune response. However, little is known about the regulation of IL-33 following its release. Here we report that the biological activity of IL-33 at its receptor ST2 is rapidly terminated in the extracellular environment by the formation of two disulphide bridges, resulting in an extensive conformational change that disrupts the ST2 binding site. Both reduced (active) and disulphide bonded (inactive) forms of IL-33 can be detected in lung lavage samples from mice challenged with Alternaria extract and in sputum from patients with moderate-severe asthma. We propose that this mechanism for the rapid inactivation of secreted IL-33 constitutes a 'molecular clock' that limits the range and duration of ST2-dependent immunological responses to airway stimuli. Other IL-1 family members are also susceptible to cysteine oxidation changes that could regulate their activity and systemic exposure through a similar mechanism.


Assuntos
Asma/imunologia , Interleucina-33/metabolismo , Receptores de Superfície Celular/imunologia , Receptores de Interleucina/imunologia , Animais , Asma/genética , Asma/metabolismo , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33/genética , Interleucina-33/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Receptores de Superfície Celular/genética , Receptores de Interleucina/genética
4.
New Phytol ; 175(4): 619-629, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17688579

RESUMO

Brassica self-incompatibility, a highly discriminating outbreeding mechanism, has become a paradigm for the study of plant cell-cell communications. When self-pollen lands on a stigma, the male ligand S cysteine-rich (SCR), which is present in the pollen coat, is transmitted to the female receptor, S-locus receptor kinase (SRK). SRK is a membrane-spanning serine/threonine receptor kinase present in the stigmatic papillar cell membrane. Haplotype-specific binding of SCR to SRK brings about pollen rejection. The extracellular receptor domain of SRK (eSRK) is responsible for binding SCR. Based on sequence homology, eSRK can be divided into three subdomains: B lectin-like, hypervariable, and PAN. Biochemical analysis of these subdomains showed that the hypervariable subdomain is responsible for most of the SCR binding capacity of eSRK, whereas the B lectin-like and PAN domains have little, if any, affinity for SCR. Fine mapping of the SCR binding region of SRK using a peptide array revealed a region of the hypervariable subdomain that plays a key role in binding the SCR molecule. We show that residues within the hypervariable subdomain define SRK binding and are likely to be involved in defining haplotype specificity.


Assuntos
Brassica/enzimologia , Brassica/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Brassica/genética , Flores/citologia , Flores/metabolismo , Haplótipos , Dados de Sequência Molecular , Mapeamento de Peptídeos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes , Nicotiana/genética , Nicotiana/metabolismo
5.
Mol Plant Pathol ; 6(2): 113-23, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20565643

RESUMO

SUMMARY The tropical staple cassava is subject to several major diseases, such as cassava bacterial blight, caused by Xanthomonas axonopodis pv. manihotis. Disease-resistant genotypes afford the only practical solution, yet despite the global importance of this crop, little is known about its defence mechanisms. cDNA-AFLP was used to isolate cassava genes differentially expressed during the hypersensitive reaction (HR) of leaves in response to an incompatible Pseudomonas syringae pathovar. Seventy-eight transcript-derived fragments (TDFs) showing differential expression (c. 75% up-regulated, 25% down-regulated) were identified. Many encoded putative homologues of known defence-related genes involved in signalling (e.g. calcium transport and binding, ACC oxidases and a WRKY transcription factor), cell wall strengthening (e.g. cinnamoyl coenzyme A reductase and peroxidase), programmed cell death (e.g. proteases, 26S proteosome), antimicrobial activity (e.g. proteases and beta-1,3-glucanases) and the production of antimicrobial compounds (e.g. DAHP synthase and cytochrome P450s). Full-length cDNAs including a probable matrix metalloprotease and a WRKY transcription factor were isolated from six TDFs. RT-PCR or Northern blot analysis showed HR-induced TDFs were maximally expressed at 24 h, although some were produced by 6 h; some were induced, albeit more slowly, in response to wounding. This work begins to reveal potential defence-related genes of this understudied, major crop.

6.
J Exp Bot ; 54(380): 157-68, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12456766

RESUMO

Of the plant self-incompatibility (SI) systems investigated to date, that possessed by members of the Brassicaceae is currently the best understood. Whilst the recent demonstrations of interactions between the male determinant (S-locus cysteine rich protein, SCR) and the female determinant (S-locus receptor kinase, SRK) indicate the minimal requirement for SI in Brassica, no consensus exists as to the nature of these molecules in vivo and the potential involvement of accessory molecules in establishing the active S-receptor complex. Variation between S haplotypes appears to be present in the molecular composition of the receptor complex, the regulation of downstream signalling and the requirement for accessory molecules. This review discusses what constitutes an active receptor complex and highlights potential differences between haplotypes. The role of accessory molecules, in particular SLG (S-locus glycoprotein) and low molecular weight pollen coat proteins (PCPs), in pollination are discussed, as is the link between SI and unilateral incompatibility (UI).


Assuntos
Brassica/genética , Proteínas de Plantas/genética , Pólen/crescimento & desenvolvimento , Proteínas Quinases/genética , Proteínas de Arabidopsis , Brassica/fisiologia , Caderinas/genética , Caderinas/metabolismo , Fertilidade/genética , Fertilidade/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/metabolismo , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA