Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Mutat ; 35(3): 278-82, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24375593

RESUMO

Melting curve prediction of PCR products is limited to perfectly complementary strands. Multiple domains are calculated by recursive nearest neighbor thermodynamics. However, the melting curve of an amplicon containing a heterozygous single-nucleotide variant (SNV) after PCR is the composite of four duplexes: two matched homoduplexes and two mismatched heteroduplexes. To better predict the shape of composite heterozygote melting curves, 52 experimental curves were compared with brute force in silico predictions varying two parameters simultaneously: the relative contribution of heteroduplex products and an ionic scaling factor for mismatched tetrads. Heteroduplex products contributed 25.7 ± 6.7% to the composite melting curve, varying from 23%-28% for different SNV classes. The effect of ions on mismatch tetrads scaled to 76%-96% of normal (depending on SNV class) and averaged 88 ± 16.4%. Based on uMelt (www.dna.utah.edu/umelt/umelt.html) with an expanded nearest neighbor thermodynamic set that includes mismatched base pairs, uMelt HETS calculates helicity as a function of temperature for homoduplex and heteroduplex products, as well as the composite curve expected from heterozygotes. It is an interactive Web tool for efficient genotyping design, heterozygote melting curve prediction, and quality control of melting curve experiments. The application was developed in Actionscript and can be found online at http://www.dna.utah.edu/hets/.


Assuntos
Heterozigoto , Reação em Cadeia da Polimerase/métodos , DNA/genética , Humanos , Internet , Controle de Qualidade , Software , Termodinâmica
2.
Mol Aspects Med ; 97: 101268, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489863

RESUMO

Melting is a fundamental property of DNA that can be monitored by absorbance or fluorescence. PCR conveniently produces enough DNA to be directly monitored on real-time instruments with fluorescently labeled probes or dyes. Dyes monitor the entire PCR product, while probes focus on a specific locus within the amplicon. Advances in amplicon melting include high resolution instruments, saturating DNA dyes that better reveal multiple products, prediction programs for domain melting, barcode taxonomic identification, high speed microfluidic melting, and highly parallel digital melting. Most single base variants and small insertions or deletions can be genotyped by high resolution amplicon melting. High resolution melting also enables heterozygote scanning for any variant within a PCR product. A web application (uMelt, http://www.dna-utah.org) predicts amplicon melting curves with multiple domains, a useful tool for verifying intended products. Additional applications include methylation assessment, copy number determination and verification of sequence identity. When amplicon melting does not provide sufficient detail, unlabeled probes or snapback primers can be used instead of covalently labeled probes. DNA melting is a simple, inexpensive, and powerful tool with many research applications that is beginning to make its mark in clinical diagnostics.


Assuntos
DNA , Desnaturação de Ácido Nucleico , Humanos , DNA/genética , DNA/química , Reação em Cadeia da Polimerase/métodos
3.
Anal Chem ; 85(20): 9907-15, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24070125

RESUMO

Fluorescent high-resolution DNA melting analysis is a robust method of genotyping and mutation scanning. However, removing background fluorescence is important for accurate classification and to correctly display helicity. Linear baseline extrapolation, commonly used with absorbance, often fails at low temperatures when fluorescence is used. A new quantum method of background removal based on the inherent decrease of fluorescence with temperature is described. Absorbance and fluorescence melting curves were compared using synthetic targets including hairpins, unlabeled probes, and a 50 bp duplex. In addition, the quantum method was compared to a previously described exponential method for analysis of genotyping data produced after polymerase chain reaction (PCR), including those from small amplicons, unlabeled probes, and snapback primers. The quantum method best matched absorbance data and predicted helicity, with the exponential method displaying low-temperature bulges and domain artifacts that can lead to incorrect genotyping. When two melting domains were widely separated, quantum analysis produced a flat baseline between domains, while exponential analysis was temperature-dependent. Both methods have little effect on the melting temperature (Tm) although some differences were significant (hairpin Tm values increased 0.7 °C by the quantum method and decreased 1.5 °C by exponential method, p = 0.01). However, peak heights on derivative plots were strongly algorithm-dependent, with exponential analysis enhancing low-temperature peaks while dampening high-temperature peaks. Quantum-analyzed fluorescence curves were a better match to absorbance data in terms of shape, area, and peak height compared to other methods, indicating that DNA helicity is best approximated by the quantum method.


Assuntos
DNA/química , DNA/genética , Técnicas de Genotipagem/métodos , Artefatos , Sequência de Bases , Desnaturação de Ácido Nucleico , Reação em Cadeia da Polimerase , Espectrometria de Fluorescência , Temperatura de Transição
4.
Mol Genet Metab ; 110(1-2): 86-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23707710

RESUMO

Isolated methylmalonic aciduria (MMA) results either from a defect in the mitochondrial enzyme methylmalonylCoA mutase (MCM), or in the intracellular conversion of vitamin B12 (cobalamin) into its active coenzyme adenosylcobalamin (AdoCbl). Mutations in the MMAB gene affect the function of the enzyme ATP:cob(I)alamin adenosyltransferase (ATR) and the production of AdoCbl. Measurement of MCM function in cultured patient fibroblasts, followed by somatic cell complementation analysis in cases where MCM function is decreased, has classically been used to diagnose the cblB cobalamin disorder. A patient with persistent MMA, who could not be diagnosed using traditional somatic cell studies, was subsequently shown by sequencing in a clinical laboratory to contain two variants in the MMAB gene. This observation brings into question whether somatic cell studies have failed to diagnose other cblB patients with mild cellular phenotypes. A high resolution melting analysis (HRMA) assay was developed for the MMAB gene. It was used to scan 96 reference samples and two cohorts of patients: 42 patients diagnosed with cblB by complementation studies; and 181 patients with undiagnosed MMA. MMAB mutations, including one novel nonsense mutation (c.12 C>A [p.C4X]), were identified in all members of the cblB cohort. Four patients with undiagnosed MMA, including the index case described above, were found to contain variants in the MMAB gene: c.185C>T (p.T62M), c.394T>C (p.C132R), c.398C>T (p.S133F), c.521C>T (p.S174L), c.572G>A (p.R191Q). Only the index case was found to have two variants, suggesting that somatic cell studies diagnose almost all cblB patients.


Assuntos
Alquil e Aril Transferases/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Cobamidas/metabolismo , Vitamina B 12/metabolismo , Alquil e Aril Transferases/química , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Cobamidas/genética , Feminino , Humanos , Masculino , Metilmalonil-CoA Mutase/genética , Mutação , Desnaturação de Ácido Nucleico/genética , Vitamina B 12/genética
5.
Mol Genet Metab ; 107(3): 363-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23026888

RESUMO

The gene product of MMAA is required for the intracellular metabolism of cobalamin (Cbl). Mutations in this gene lead to the cblA class of disorders, characterized by isolated methylmalonic aciduria. We have been concerned that somatic cell methods of diagnosis may miss patients with mild cellular phenotypes. A high resolution melting analysis (HRMA) assay was developed to rapidly scan the coding exons and flanking intronic regions of the MMAA gene for variants. DNA was scanned by HRMA from 96 unaffected reference individuals, 72 cblA patients confirmed by complementation, and 181 patients with isolated elevated methylmalonic acid, who could not be diagnosed using complementation analysis. Suspected variants were confirmed by Sanger sequencing. In the cblA cohort, HRMA correctly identified all previously known mutations as well as an additional 22 variants, 10 of which had not been previously reported. Novel variants included one duplication (c.551dupG, p.C187LfsX3), one deletion (c.387delC, p.Y129YfsX13), one splice site mutation (c.440-2A>G, splice site), 4 missense mutations (c.748G>A, p.E520K; c.820G>A, p.G274S; c.627G>T, p.R209S; c.826A>G, p.K276E), and 3 nonsense mutations (c.960G>A, p.W320X; c.1075C>T, p.E359X; c.1084C>T, p.Q362X). All novel missense variants affect highly conserved residues and are predicted to be damaging. Scanning of MMAA in the 181 undiagnosed samples revealed a single novel heterozygous missense change (c.821G>A, p.G274D).


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Análise Mutacional de DNA/métodos , Proteínas de Transporte da Membrana Mitocondrial/genética , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Erros Inatos do Metabolismo dos Aminoácidos/urina , Estudos de Casos e Controles , Éxons , Humanos , Íntrons , Ácido Metilmalônico/sangue , Ácido Metilmalônico/urina , Mutação , Desnaturação de Ácido Nucleico , Vitamina B 12/metabolismo
6.
Arch Biochem Biophys ; 470(1): 64-72, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18060852

RESUMO

In this paper, we describe the expression and characterization of recombinant human cystathionine beta-synthase (CBS) in Escherichia coli. We have used a glutathione-S-transferase (GST) fusion protein vector and incorporated a cleavage site with a long hinge region which allows for the independent folding of CBS and its fusion partner. In addition, our construct has the added benefit of yielding a purified CBS which only contains one extra glycine amino acid residue at the N-terminus. In our two-step purification procedure we are able to obtain a highly pure enzyme in sufficient quantities for crystallography and other physical chemical methods. We have investigated the biochemical and catalytic properties of purified full-length human CBS and of two truncation mutants lacking the C-terminal domain or both the N-terminal heme-binding and the C-terminal regulatory regions. Specifically, we have determined the pH optima of the different CBS forms and their kinetic and spectral properties. The full-length and the C-terminally truncated enzyme had a broad pH 8.5 optimum while the pH optimum of the N- and C- terminally truncated enzyme was sharp and shifted to pH 9. Furthermore, we have shown unequivocally that CBS binds one mole of heme per subunit by determining both the heme and the iron content of the enzyme. The activity of the enzyme was unaffected by the redox status of the heme iron. Finally, we show that CBS is stimulated by S-adenosyl- l-methionine but not its analogs.


Assuntos
Cistationina beta-Sintase/química , Cistationina beta-Sintase/isolamento & purificação , Escherichia coli/metabolismo , Ativação Enzimática , Estabilidade Enzimática , Escherichia coli/genética , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
7.
Antioxid Redox Signal ; 28(4): 311-323, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28874062

RESUMO

AIMS: The transsulfuration pathway enzymes cystathionine beta-synthase (CBS) and cystathionine gamma-lyase are thought to be the major source of hydrogen sulfide (H2S). In this study, we assessed the role of CBS in H2S biogenesis. RESULTS: We show that despite discouraging enzyme kinetics of alternative H2S-producing reactions utilizing cysteine compared with the canonical condensation of serine and homocysteine, our simulations of substrate competitions at biologically relevant conditions suggest that cysteine is able to partially compete with serine on CBS, thus leading to generation of appreciable amounts of H2S. The leading H2S-producing reaction is condensation of cysteine with homocysteine, while cysteine desulfuration plays a dominant role when cysteine is more abundant than serine and homocysteine is limited. We found that the serine-to-cysteine ratio is the main determinant of CBS H2S productivity. Abundance of cysteine over serine, for example, in plasma, allowed for up to 43% of CBS activity being responsible for H2S production, while excess of serine typical for intracellular levels effectively limited such activity to less than 1.5%. CBS also produced lanthionine from serine and cysteine and a third of lanthionine coming from condensation of two cysteines contributed to the H2S pool. INNOVATION: Our study characterizes the H2S-producing potential of CBS under biologically relevant conditions and highlights the serine-to-cysteine ratio as the main determinant of H2S production by CBS in vivo. CONCLUSION: Our data clarify the function of CBS in H2S biogenesis and the role of thioethers as surrogate H2S markers. Antioxid. Redox Signal. 28, 311-323.


Assuntos
Biomarcadores/metabolismo , Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfetos/metabolismo , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Animais , Biomarcadores/química , Catálise , Cistationina beta-Sintase/química , Cisteína/química , Haplorrinos , Homocisteína/química , Sulfeto de Hidrogênio/química , Cinética , Camundongos , Camundongos Knockout , Serina/química , Sulfetos/química , Enxofre/metabolismo
8.
Pharmacogenomics ; 8(6): 597-608, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17559349

RESUMO

High-resolution melting of DNA is a simple solution for genotyping, mutation scanning and sequence matching. The melting profile of a PCR product depends on its GC content, length, sequence and heterozygosity and is best monitored with saturating dyes that fluoresce in the presence of double-stranded DNA. Genotyping of most variants is possible by the melting temperature of the PCR products, while all variants can be genotyped with unlabeled probes. Mutation scanning and sequence matching depend on sequence differences that result in heteroduplexes that change the shape of the melting curve. High-resolution DNA melting has several advantages over other genotyping and scanning methods, including an inexpensive closed tube format that is homogenous, accurate and rapid. Owing to its simplicity and speed, the method is a good fit for personalized medicine as a rapid, inexpensive method to predict therapeutic response.


Assuntos
Análise Mutacional de DNA/métodos , Temperatura Alta , Técnicas de Diagnóstico Molecular/métodos , Desnaturação de Ácido Nucleico/genética , Animais , Análise Mutacional de DNA/tendências , Humanos , Técnicas de Diagnóstico Molecular/tendências
9.
Clin Chem ; 53(11): 1891-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17890437

RESUMO

BACKGROUND: Complete gene analysis of the cystic fibrosis transmembrane conductance regulator gene (CFTR) by scanning and/or sequencing is seldom performed because of the cost, time, and labor involved. High-resolution DNA melting analysis is a rapid, closed-tube alternative for gene scanning and genotyping. METHODS: The 27 exons of CFTR were amplified in 37 PCR products under identical conditions. Common variants in 96 blood donors were identified in each exon by high-resolution melting on a LightScanner(R). We then performed a subsequent blinded study on 30 samples enriched for disease-causing variants, including all 23 variants recommended by the American College of Medical Genetics and 8 additional, well-characterized variants. RESULTS: We identified 22 different sequence variants in 96 blood donors, including 4 novel variants and the disease-causing p.F508del. In the blinded study, all 40 disease-causing heterozygotes (29 unique) were detected, including 1 new probable disease-causing variant (c.3500-2A>T). The number of false-positive amplicons was decreased 96% by considering the 6 most common heterozygotes. The melting patterns of most heterozygotes were unique (37 of 40 pairs within the same amplicon), the exceptions being p.F508del vs p.I507del, p.G551D vs p.R553X, and p.W1282X vs c.4002A>G. The homozygotes p.G542X, c.2789 + 5G>A, and c.3849 + 10kbC>T were directly identified, but homozygous p.F508del was not. Specific genotyping of these exceptions, as well as genotyping of the 5T allele of intron 8, was achieved by unlabeled-probe and small-amplicon melting assays. CONCLUSIONS: High-resolution DNA melting methods provide a rapid and accurate alternative for complete CFTR analysis. False positives can be decreased by considering the melting profiles of common variants.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , DNA/genética , Doadores de Sangue , DNA/sangue , Éxons , Variação Genética , Genótipo , Heterozigoto , Humanos , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA