Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 464(7286): 271-4, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20220847

RESUMO

Halogen atoms and oxides are highly reactive and can profoundly affect atmospheric composition. Chlorine atoms can decrease the lifetimes of gaseous elemental mercury and hydrocarbons such as the greenhouse gas methane. Chlorine atoms also influence cycles that catalytically destroy or produce tropospheric ozone, a greenhouse gas potentially toxic to plant and animal life. Conversion of inorganic chloride into gaseous chlorine atom precursors within the troposphere is generally considered a coastal or marine air phenomenon. Here we report mid-continental observations of the chlorine atom precursor nitryl chloride at a distance of 1,400 km from the nearest coastline. We observe persistent and significant nitryl chloride production relative to the consumption of its nitrogen oxide precursors. Comparison of these findings to model predictions based on aerosol and precipitation composition data from long-term monitoring networks suggests nitryl chloride production in the contiguous USA alone is at a level similar to previous global estimates for coastal and marine regions. We also suggest that a significant fraction of tropospheric chlorine atoms may arise directly from anthropogenic pollutants.


Assuntos
Atmosfera/química , Cloro/química , Nitritos/química , Nitrogênio/química , Aerossóis/química , Ar/análise , Colorado , Modelos Químicos , Nitritos/análise , Óxidos de Nitrogênio/química , Fatores de Tempo
2.
Phys Chem Chem Phys ; 17(43): 28505-9, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26267655

RESUMO

Energetic acetone cations decay by methane or methyl radical loss. Although the methane-loss barrier to form the ketene cation is higher and the activation entropy is lower, it has a significant branching ratio at low energies thanks to quantum tunnelling. H-atom tunnelling can be selectively quenched and the methane-loss channel suppressed quantitatively by deuteration.

3.
J Phys Chem A ; 117(22): 4556-63, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23634943

RESUMO

The dissociation dynamics of internal energy selected iron pentacarbonyl cations, Fe(CO)5(+), have been investigated using the imaging photoelectron photoion coincidence (iPEPICO) spectrometer at the Swiss Light Source. The molecular ion loses all five carbonyl ligands in sequential dissociations in the 8.5-20 eV photon energy range. The Fe(CO)5(+) parent ion is metastable at the onset of the first dissociation reaction on the time scale of the experiment. The slightly asymmetric and broad daughter ion time-of-flight distributions indicate parent ion lifetimes in the microsecond range, and are used to obtain an experimental dissociation rate curve. Further carbonyl losses were found to be fast at threshold. The fractional parent and daughter ion abundances as a function of the photon energy, that is, breakdown diagram, as well as the dissociation rates for the first CO loss were modeled using the statistical Rice-Ramsperger-Kassel-Marcus (RRKM) and statistical adiabatic channel model (SSACM) theories. The excess energy redistribution in the products was also taken into account in a statistical framework. The 0 K dissociative photoionization thresholds for the five carbonyl-loss channels were found to be 9.015 ± 0.024 eV, 10.199 ± 0.027 eV, 10.949 ± 0.033 eV, 12.282 ± 0.39 eV, and 13.821 ± 0.045 eV for the processes leading to Fe(CO)4(+), Fe(CO)3(+), Fe(CO)2(+), Fe(CO)(+), and Fe(+), respectively. The iron cation thermochemistry is well-known, and these onsets connect the bare metal ion to the other fragment ions as well as to the gas phase neutral Fe(CO)5.

4.
J Phys Chem B ; 109(17): 8393-9, 2005 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16851985

RESUMO

Energy selected trimethyl phosphine ions were prepared by threshold photoelectron photoion coincidence (TPEPICO) spectroscopy. This ion dissociates via H, CH(3), and CH(4) loss, the latter two involving hydrogen transfer steps. The ion time-of-flight distribution and the breakdown diagram are analyzed in terms of the statistical RRKM theory, which includes tunneling. Ab initio and DFT calculations provide the vibrational frequencies required for the RRKM modeling. CH(3) loss could produce both the P(CH(3))(2)(+) by a simple bond dissociation step, and the more stable HP(CH(2))CH(3)(+) ion by a hydrogen transfer step. Quantum chemical calculations are extensively used to uncover the reaction scheme, and they strongly suggest that the latter product is exclusively formed via an isomerization step in the energy range of the experiment. The data analysis, which includes modeling with the trimethyl phosphine thermal energy distribution, provides accurate onset energies for both H (E(0K) = 1024.1 +/- 3.5 kJ/mol) and CH(3) (E(0K) = 1024.8 +/- 3.5 kJ/mol) loss reactions. From this analysis, we conclude that the Delta(f)H(298K) degrees [HP(CH(2))(CH(3))(+)] = 783 +/- 8 kJ/mol and Delta(f)H(298K) degrees [P(CH(2))(CH(3))(2)(+)] = 711 +/- 8 kJ/mol.

5.
J Phys Chem A ; 111(1): 16-26, 2007 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17201383

RESUMO

The sequential ethene (C2H4) loss channels of energy-selected ethylphosphine ions have been studied using threshold photoelectron photoion coincidence (TPEPICO) spectroscopy in which ion time-of-flight (TOF) distributions are recorded as a function of the photon energy. The ion TOF distributions and breakdown diagrams have been modeled in terms of the statistical RRKM theory for unimolecular reactions, providing 0 K dissociation onsets, E0, for the ethene loss channels. Three RRKM curves were used to model the five measurements, since two of the reactions differ only by the internal energy of the parent ion. This series of dissociations provides a detailed check of the calculation of the product energy distribution for sequential reactions. From the determined E0's, the heats of formation of several ethylphosphine neutrals and ions have been determined: Delta(f)H degrees 298K[P(C(2)H(5))3] = -152.7 +/- 2.8 kJ/mol, Delta(f)H degrees 298K[P(C(2)H(5))3+] = 571.6 +/- 4.0 kJ/mol, Delta(f)H degrees 298K[HP(C(2)H(5))2] = -89.6 +/- 2.1 kJ/mol, Delta(f)H degrees 298K[HP(C(2)H(5))2+] = 669.9 +/- 2.5 kJ/mol, Delta(f)H degrees 298K[H(2)PC(2)H(5)] = -36.5 +/- 1.5 kJ/mol, Delta(f)H degrees 298K[H(2)PC(2)H(5)+] = 784.0 +/- 1.9 kJ/mol. These values have been supported by G2 and G3 calculations using isodesmic reactions. Coupled cluster calculations have been used to show that the C2H4 loss channel, which involves a hydrogen transfer step, proceeds without a reverse energy barrier.

6.
J Phys Chem A ; 110(50): 13425-33, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17165868

RESUMO

Alkylamines (RCH(2)NH(2), R = H, CH(3), C(2)H(5), C(3)H(7), i-C(3)H(7)) have been investigated by dissociative photoionization by threshold photoelectron photoion coincidence spectroscopy (TPEPICO). The 0 K dissociation limits (9.754 +/- 0.008, 9.721 +/- 0.008, 9.702 +/- 0.012, and 9.668 +/- 0.012 eV for R = CH(3), C(2)H(5), C(3)H(7), i-C(3)H(7), respectively) have been determined by preparing energy-selected ions and collecting the fractional abundances of parent and daughter ions. All alkylamine cations produce the methylenimmonium ion, CH(2)NH(2)+, and the corresponding alkyl free radical. Two isodesmic reaction networks have also been constructed. The first one consists of the alkylamine parent molecules, and the other of the alkyl radical photofragments. Reaction heats within the isodesmic networks have been calculated at the CBS-APNO and W1U levels of theory. The two networks are connected by the TPEPICO dissociation energies. The heats of formation of the amines and the alkyl free radicals are then obtained by a modified least-squares fit to minimize the discrepancy between the TPEPICO and the ab initio values. The analysis of the fit reveals that the previous experimental heats of formation are largely accurate, but certain revisions are suggested. Thus, Delta(f)Ho(298K)[CH(3)NH(2)(g)] = -21.8 +/- 1.5 kJ mol-1, Delta(f)Ho(298K)[C(2)H(5)NH(2)(g)] = -50.1 +/- 1.5 kJ mol(-1), Delta(f)Ho(298K)[C(3)H(7)NH(2)(g)] = -70.8 +/- 1.5 kJ mol(-1), Delta(f)Ho(298K)[C(3)H(7)*] = 101.3 +/- 1 kJ mol(-1), and Delta(f)Ho(298K)[i-C(3)H(7)*] = 88.5 +/- 1 kJ mol(-1). The TPEPICO and the ab initio results for butylamine do not agree within 1 kJ mol-1; therefore, no new heat of formation is proposed for butylamine. It is nevertheless indicated that the previous experimental heats of formation of methylamine, propylamine, butylamine, and isobutylamine may have been systematically underestimated. On the other hand, the error in the ethyl radical heat of formation is found to be overestimated and can be decreased to +/- 1 kJ mol(-1); thus, Delta(f)Ho(298K)[C(2)H(5).] = 120.7 +/- 1 kJ mol(-1). On the basis of the data analysis, the heat of formation of the methylenimmonium ion is confirmed to be Delta(f)Ho(298K)[CH(2)NH(2)+] = 750.3 +/- 1 kJ mol(-1).

7.
J Phys Chem A ; 109(5): 939-46, 2005 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16838968

RESUMO

The dissociative photoionization onsets for the formation of the propionyl ion (C(2)H(5)CO(+)) and the acetyl ion (CH(3)CO(+)) were measured from energy selected butanone and 2,3-pentanedione ions using the technique of threshold photoelectron photoion coincidence (TPEPICO) spectroscopy. Ion time-of-flight (TOF) mass spectra recorded as a function of the ion internal energy permitted the construction of breakdown diagrams, which are the fractional abundances of ions as a function of the photon energy. The fitting of these diagrams with the statistical theory of unimolecular decay permitted the extraction of the 0 K dissociation limits of the first and second dissociation channels. This procedure was tested using the known energetics of the higher energy dissociation channel in butanone that produced the acetyl ion and the ethyl radical. By combining the measured dissociative photoionization onsets with the well-established heats of formation of CH(3)(*), CH(3)CO(+), CH(3)CO(*), and butanone, the 298 K heats of formation, Delta(f)H degrees (298K), of the propionyl ion and radical were determined to be 618.6 +/- 1.4 and -31.7 +/- 3.4 kJ/mol, respectively, and Delta(f)H degrees (298K)[2,3-pentanedione] was determined to be -343.7 +/- 2.5 kJ/mol. This is the first experimentally determined value for the heat of formation for 2,3-pentanedione. Ab initio calculations at the Weizmann-1 (W1) level of theory predict Delta(f)H degrees (298K) values for the propionyl ion and radical of 617.9 and -33.3 kJ/mol, respectively, in excellent agreement with the measured values.

8.
J Phys Chem A ; 109(9): 1802-9, 2005 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16833509

RESUMO

The dissociative photoionization studies have been performed for a set of dihalomethane CH(2)XY (X,Y = Cl, Br, and I) molecules employing the threshold photoelectron photoion coincidence (TPEPICO) technique. Accurate dissociation onsets for the first and second dissociation limits have been recorded in the 10-13 eV energy range, and ionization potentials have been measured for these compounds. By using our experimental dissociation onsets and the known heat of formation of CH(2)Cl(2) molecule, it has been possible to derive the 0 and 298 K heats of formation of all six neutral dihalomethanes as well as their ionic fragments, CH(2)Cl(+), CH(2)Br(+), and CH(2)I(+), to a precision better than 3 kJ/mol. These new measurements serve to fill the lack of reliable experimental thermochemical information on these molecules, correct the old literature values by up to 19 kJ/mol, and reduce their uncertainties. From our thermochemical results it has also been possible to derive a consistent set of bond dissociation energies for the dihalomethanes.

9.
Phys Chem Chem Phys ; 7(7): 1507-13, 2005 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19787975

RESUMO

Recent advances in threshold photoelectron photoion coincidence (TPEPICO) make possible the analysis of several parallel and sequential dissociations of energy selected ions. The use of velocity focusing optics for the simultaneous collection of threshold and energetic electrons not only improves the resolution, but also permits subtraction of coincidences associated with "hot" electrons, thereby yielding TPEPICO data with no contamination from "hot" electrons. The data analysis takes into account the thermal energy distribution of the sample and uses statistical theory rate constants and energy partitioning in dissociation reactions to model the time of flight distributions and the breakdown diagram. Examples include CH2BrCl and P(C2H5)3. Of particular interest is the ability to extract error limits for rate constants and dissociation energies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA