Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 296: 134010, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35181425

RESUMO

The knowledge on the sorption behaviour of antibiotics on nanomaterials is limited, especially regarding the reaction mechanism on the surface of carbon nanomaterials, which may determine both the adsorptive capacity and regeneration efficiency of graphene adsorbers. In this work, we used molecular modelling to generate the most comprehensive (to date) adsorption dataset for pristine and functionalised graphene interacting with 8 ß-lactams, 3 macrolide, 12 quinolone, 4 tetracycline, 15 sulphonamide, trimethoprim, 2 lincosamide, 2 phenicole and 4 nitroimidazole antibiotics, and their transformation products in water and n-octanol. Results show that various non-covalent interactions that operate simultaneously, including van der Waals dispersion forces, π-interactions, hydrophobic interaction and hydrogen bonding, facilitate adsorption. The molecular properties of antibiotics and graphene/graphene oxide, as well as the composition of the background solution regulate the magnitude of these interactions. Our findings demonstrate that the most efficient method for the removal of antibiotics from aquatic environments is the use of graphene at environmental pH. The subsequent regeneration of the sorbent is best achieved through washing with slightly basic (pH 8-10) non-polar solvents. The obtained theoretical insights expand and complement experimental observations and provide important information that can contribute to further exploration into the adsorbent properties of graphene-based materials, and towards the development of predictive adsorption models.


Assuntos
Grafite , Poluentes Químicos da Água , Purificação da Água , Adsorção , Antibacterianos/química , Grafite/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
2.
J Hazard Mater ; 414: 125554, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33684815

RESUMO

Understanding and acquiring knowledge about the adsorption of pharmaceuticals on carbon-based nanomaterials (CNMs) is imperative to the chemical engineering applications of CNMs, as well as to risk assessment and pollution control of both CNMs and pharmaceuticals. A computational assessment of the mechanism and thermodynamics of the adsorption of 18 most common pharmaceuticals (acetaminophen, acetylsalicylic acid, atenolol, caffeine, carbamazepine, clofibric acid, diclofenac, fenofibric acid, fluoxetine, gemfibrozil, ibuprofen, ketoprofen, naproxen, phenazone, primidone, propranolol, salicylic acid, tramadol) on four different CNMs (pristine/functionalised graphene and carbon nanotube) in two different solvents (water and n-octanol) was provided. We show that the adsorption of pharmaceuticals on pristine CNMs is controlled by dispersion forces, π-interactions and hydrophobic interaction. On the other hand, adsorption on functionalised CNMs is controlled by hydrogen bonding and Coulombic interactions. Furthermore, we demonstrate how functionalization of CNM, CNM curvature and background solution properties modulate the intensity of non-covalent interactions and their contribution towards adsorption free energy. With this knowledge, we pinpoint functionalised graphene at environmental pH as the most effective setting for the removal of a given set of pharmaceuticals from water and wastewater. Finally, we show that CNMs may transport pharmaceuticals into living organisms and release them in nonpolar mediums such as cellular membranes and fat cells.


Assuntos
Nanoestruturas , Preparações Farmacêuticas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA