Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Evol Comput ; 27(1): 147-171, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30407875

RESUMO

Automatic algorithm configuration (AAC) is becoming a key ingredient in the design of high-performance solvers for challenging optimisation problems. However, most existing work on AAC deals with configuration procedures that optimise a single performance metric of a given, single-objective algorithm. Of course, these configurators can also be used to optimise the performance of multi-objective algorithms, as measured by a single performance indicator. In this work, we demonstrate that better results can be obtained by using a native, multi-objective algorithm configuration procedure. Specifically, we compare three AAC approaches: one considering only the hypervolume indicator, a second optimising the weighted sum of hypervolume and spread, and a third that simultaneously optimises these complementary indicators, using a genuinely multi-objective approach. We assess these approaches by applying them to a highly-parametric local search framework for two widely studied multi-objective optimisation problems, the bi-objective permutation flowshop and travelling salesman problems. Our results show that multi-objective algorithms are indeed best configured using a multi-objective configurator.


Assuntos
Algoritmos , Simulação por Computador , Armazenamento e Recuperação da Informação/métodos , Modelos Teóricos , Reconhecimento Automatizado de Padrão/métodos , Resolução de Problemas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA