RESUMO
Covalent organic frameworks (COFs) are typically prepared in the form of insoluble microcrystalline powders using batch solvothermal reactions that are energy-intensive and require long annealing periods (>120 °C, >72 h). Thus, their wide-scale adoption in a variety of potential applications is impeded by complications related to synthesis, upscaling, and processing, which also compromise their commercialization. Here we report a strategy to address both the need for scalable synthesis and processing approaches through the continuous, accelerated synthesis, and processing of imine- and hydrazone-linked COFs using a flow microreactor. The flow microreactor is capable of unprecedented COF productivities, up to 61,111 kg m-3 day-1, and provides control over key stages of COF formation, including nanoparticle growth, self-assembly, and precipitation. Additionally, the technique successfully yields highly crystalline and porous COFs in versatile macroscopic structures such as monoliths, membranes, prints, and packed beds. We also show that a COF synthesized using the flow microreactor acts as an excellent photocatalyst for the photocatalytic degradation of perfluorooctanoic acid (PFOA) outperforming the degradation efficiency of its batch analogue and other classical photocatalysts such as titanium dioxide (TiO2).
RESUMO
Covalent organic frameworks (COFs) are crystalline, nanoporous materials of interest for various applications, but current COF synthetic routes lead to insoluble aggregates which precludes processing for practical implementation. Here, we report a COF synthesis method that produces a stable, homogeneous suspension of crystalline COF nanoparticles that enables the preparation of COF monoliths, membranes, and films using conventional solution-processing techniques. Our approach involves the use of a polar solvent, diacid catalyst, and slow reagent mixing procedure at elevated temperatures which altogether enable access to crystalline COF nanoparticle suspension that does not aggregate or precipitate when kept at elevated temperatures. On cooling, the suspension undergoes a thermoreversible gelation transition to produce crystalline and highly porous COF materials. We further show that the modified synthesis approach is compatible with various COF chemistries, including both large- and small-pore imine COFs, hydrazone-linked COFs, and COFs with rhombic and hexagonal topologies, and in each case, we demonstrate that the final product has excellent crystallinity and porosity. The final materials contain both micro- and macropores, and the total porosity can be tuned through variation of sample annealing. Dynamic light scattering measurements reveal the presence of COF nanoparticles that grow with time at room temperature, transitioning from a homogeneous suspension to a gel. Finally, we prepare imine COF membranes and measure their rejection of polyethylene glycol (PEG) polymers and oligomers, and these measurements exhibit size-dependent rejection and adsorption of PEG solutes. This work demonstrates a versatile processing strategy to create crystalline and porous COF materials using solution-processing techniques and will greatly advance the development of COFs for various applications.