Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5250, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438488

RESUMO

The frequency and intensity of summer extreme climate events are increasing over time, and have a substantial negative effect on plants, which may be evident in their impact on photosynthesis. Here, we examined the photosynthetic responses of Larix kaempferi and Pinus densiflora seedlings to extreme heat (+ 3 °C and + 6 °C), drought, and heavy rainfall by conducting an open-field multifactor experiment. Leaf gas exchange in L. kaempferi showed a decreasing trend under increasing temperature, showing a reduction in the stomatal conductance, transpiration rate, and net photosynthetic rate by 135.2%, 102.3%, and 24.8%, respectively, in the + 6 °C treatment compared to those in the control. In contrast, P. densiflora exhibited a peak function in the stomatal conductance and transpiration rate under + 3 °C treatment. Furthermore, both species exhibited increased total chlorophyll contents under extreme heat conditions. However, extreme precipitation had no marked effect on photosynthetic activities, given the overall favorable water availability for plants. These results indicate that while extreme heat generally reduces photosynthesis by triggering stomatal closure under high vapor pressure deficit, plants employ diverse stomatal strategies in response to increasing temperature, which vary among species. Our findings contribute to the understanding of mechanisms underlying the photosynthetic responses of conifer seedlings to summer extreme climate events.


Assuntos
Calor Extremo , Larix , Pinus , Plântula , Fotossíntese
2.
Environ Monit Assess ; 185(6): 4775-90, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23054271

RESUMO

Advancing land degradation in the irrigated areas of Central Asia hinders sustainable development of this predominantly agricultural region. To support decisions on mitigating cropland degradation, this study combines linear trend analysis and spatial logistic regression modeling to expose a land degradation trend in the Khorezm region, Uzbekistan, and to analyze the causes. Time series of the 250-m MODIS NDVI, summed over the growing seasons of 2000-2010, were used to derive areas with an apparent negative vegetation trend; this was interpreted as an indicator of land degradation. About one third (161,000 ha) of the region's area experienced negative trends of different magnitude. The vegetation decline was particularly evident on the low-fertility lands bordering on the natural sandy desert, suggesting that these areas should be prioritized in mitigation planning. The results of logistic modeling indicate that the spatial pattern of the observed trend is mainly associated with the level of the groundwater table (odds = 330 %), land-use intensity (odds = 103 %), low soil quality (odds = 49 %), slope (odds = 29 %), and salinity of the groundwater (odds = 26 %). Areas, threatened by land degradation, were mapped by fitting the estimated model parameters to available data. The elaborated approach, combining remote-sensing and GIS, can form the basis for developing a common tool for monitoring land degradation trends in irrigated croplands of Central Asia.


Assuntos
Agricultura/estatística & dados numéricos , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Fenômenos Geológicos , Agricultura/métodos , Sistemas de Informação Geográfica , Água Subterrânea/química , Modelos Logísticos , Tecnologia de Sensoriamento Remoto , Salinidade , Análise Espaço-Temporal , Uzbequistão , Movimentos da Água
3.
Sci Rep ; 13(1): 22210, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097646

RESUMO

Despite the importance of agroforestry parkland systems for ecosystem and livelihood benefits, evidence on determinants of carbon storage in parklands remains scarce. Here, we assessed the direct and indirect influence of human management (selective harvesting of trees), abiotic factors (climate, topography, and soil) and multiple attributes of species diversity (taxonomic, functional, and structural) on aboveground carbon (AGC) stocks in 51 parklands in drylands of Benin. We used linear mixed-effects regressions and structural equation modeling to test the relative effects of these predictors on AGC stocks. We found that structural diversity (tree size diversity, HDBH) had the strongest (effect size ß = 0.59, R2 = 54%) relationship with AGC stocks, followed by community-weighted mean of maximum height (CWMMAXH). Taxonomic diversity had no significant direct relationship with AGC stocks but influenced the latter indirectly through its negative effect on CWMMAXH, reflecting the impact of species selection by farmers. Elevation and soil total organic carbon content positively influenced AGC stocks both directly and indirectly via HDBH. No significant association was found between AGC stocks and tree harvesting factor. Our results suggest the mass ratio, niche complementarity and environmental favorability as underlying mechanisms of AGC storage in the parklands. Our findings also highlight the potential role of human-driven filtering of local species pool in regulating the effect of biodiversity on AGC storage in the parklands. We conclude that the promotion of AGC stocks in parklands is dependent on protecting tree regeneration in addition to enhancing tree size diversity and managing tall-stature trees.


Assuntos
Ecossistema , Árvores , Humanos , Árvores/fisiologia , Florestas , Carbono , Biodiversidade , Solo , Biomassa
4.
Tree Physiol ; 29(6): 799-808, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19324691

RESUMO

Extensive degradation of irrigated croplands, due to increasing soil salinity and depletion of soil nutrient stocks, is a major problem in Central Asia (CA), one of the largest irrigated areas in the world. To assess the potential for improving the productive capacity of degraded lands by afforestation, we examined N(2) fixation of Elaeagnus angustifolia L. in mixed plantations with non-fixing Populus euphratica Oliv. and Ulmus pumila L. Fixation of N(2) was quantified by the (15)N natural abundance technique based on both foliar and whole-plant sampling during five consecutive growing seasons. Despite elevated root-zone soil salinity (6-10 dS m(-1)) and deficiency in plant-available P (4-15 mg kg(-1)), N(2) fixation (%Ndfa) increased from an initial value of 20% to almost 100% over 5 years. Within each growing season, %Ndfa steadily increased and peaked in the fall. Annual N(2) fixation, determined using foliar delta(15)N, initially averaged 0.02 Mg ha(-1), peaked at 0.5 Mg ha(-1) during the next 2 years and thereafter stabilized at 0.3 Mg ha(-1). Estimates based on whole-plant delta(15)N were <10% lower than those based on foliar delta(15)N. The increase in plant-available soil N was significantly higher in E. angustifolia plots than in P. euphratica and U. pumila plots. Increases in the concentrations of organic C (19%), total N (21%) and plant-available P (74%) in the soil were significant irrespective of tree species. This improvement in soil fertility is further evidence that afforestation with mixed-species plantations can be a sustainable land use option for the degraded irrigated croplands in CA.


Assuntos
Elaeagnaceae/metabolismo , Fixação de Nitrogênio/fisiologia , Solo/análise , Ásia Central , Ecossistema , Populus/metabolismo , Ulmus/metabolismo
5.
Sci Rep ; 7(1): 1375, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465582

RESUMO

Despite rapid advances and large-scale initiatives in forest mapping, reliable cross-border information about the status of forest resources in Central Asian countries is lacking. We produced consistent Central Asia forest cover (CAFC) maps based on a cost-efficient approach using multi-resolution satellite imagery from Landsat and MODIS during 2009-2011. The spectral-temporal metrics derived from 2009-2011 Landsat imagery (overall accuracy of 0.83) was used to predict sub-pixel forest cover on the MODIS scale for 2010. Accuracy assessment confirmed the validity of MODIS-based forest cover map with a normalized root-mean-square error of 0.63. A general paucity of forest resources in post-Soviet Central Asia was indicated, with 1.24% of the region covered by forest. In comparison to the CAFC map, a regional map derived from MODIS Vegetation Continuous Fields tended to underestimate forest cover, while the Global Forest Change product matched well. The Global Forest Resources Assessments, based on individual country reports, overestimated forest cover by 1.5 to 147 times, particularly in the more arid countries of Turkmenistan and Uzbekistan. Multi-resolution imagery contributes to regionalized assessment of forest cover in the world's drylands while developed CAFC maps (available at https://data.zef.de/ ) aim to facilitate decisions on biodiversity conservation and reforestation programs in Central Asia.


Assuntos
Florestas , Processamento de Imagem Assistida por Computador/métodos , Imagens de Satélites , Ásia Central , Ecologia/instrumentação , Ecologia/métodos , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA